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Introduction. We will discuss tiling of various plane regions by rectan-
gles and squares and also briefly discuss what happens in higher dimensions.
Our analysis follows many of the ideas introduced in 1940 in [1]. We have
updated and expanded these methods to use more modern techniques. First
we need to start with a definition.

Definition 0.1. A tiling of a region R is a dissection of R into finitely
many connected subsets whose union is R and whose interiors are pairwise
disjoint.

1 General resistor networks

We begin with the basic definitions.

Definition 1.1. A graph with boundary is a triple Γ = (V, ∂V, E), where
the members of the set V are called vertices, the members of the set ∂V
are called boundary vertices or poles, members of the set V \ ∂V are called
interior vertices, and the members of the set E are called edges. We must
have ∂V⊂V and E is a subset of the set of unordered pairs of vertices.

Definition 1.2. A resistor network is a pair (Γ, γ), where Γ is a graph
with boundary and γ : E → R+ is a positive real valued function on the
edges of Γ. γ is the conductivity function and if e is an edge, γ(e) is called
the conductivity of e.
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Definition 1.3. A function f : V → R+, where V is the set of vertices of
a network N , is called γ − harmonic if for each p ∈ V \ ∂V , we have

Ip(f) =
∑

q∈N(p)

γ(p, q) (f(p) − f(q)) = 0

Here N(p) is the set of all vertices which are connected to p by an edge, and
γ(p, q) denotes the conductivity of the edge joining p and q.

Instead of saying f is a function on the vertices of a network N , we will
simply say that f is a function on N itself. Notice that this condition can
be re-written as

f(p) =

∑

q∈N(p) γ(p, q)f(q)
∑

q∈N(p) γ(p, q)

This formula can be used to compute the unique γ-harmonic function f
with given boundary values. Of course, we need the following well-known

Theorem 1.1. If f : N → R is a γ-harmonic function, then f assumes

its maximum and minimum on the boundary nodes of N . If f assumes a

minimum or a maximum at an interior node, then f is constant.

Theorem 1.2. Given any resistor network N , if we let ∂N be the set of

boundary vertices, say ∂N = v1, . . . , vn, and we are given n real numbers

a1, . . . , an, then there exists a unique γ-harmonic function f on N such that

f(vi) = ai, ∀ 1 ≤ i ≤ n. This function f is called the solution to the

Dirichlet problem on N with boundary data a1, . . . , an.

For any resistor network N , we can define the Kirchhoff matrix as follows:
K = (κi,j)1≤i,j≤M

where M = |V |. For i 6= j we have κi,j = 0 if ij is not an
edge, and κi,j = −γ(i, j) if ij is an edge. We also have
κi,i =

∑

j∈N(i) γ(i, j).

Some properties of the Kirchhoff matrix for a connected network.

1. K is symmetric, i.e. Kt = K.

2. K is positive semi-definite, i.e. given any vector v ∈ Rn, we have
vtKv ≥ 0 and vtKv = 0 ⇔ v is constant, i.e. all its components are the
same.
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3. Any principal sub-matrix of K is positive definite. A principal sub-
matrix is one obtained by deleting the same rows and columns. For example,
a matrix obtained by removing the rows 2,3 and 5 and columns 2,3 and 5
would be a principal sub-matrix.

4. If we let Kr,s denote the matrix obtained from K by deleting row r

and column s, then (−1)r+s det (Kr,s) > 0 and this quantity is independent
of r and s. This common value is called the complexity of the network N

and is denoted by C.

Theorem 1.3., the Matrix Tree Theorem If the conductivity γ of a

network N is identically equal to 1, then the complexity C is equal to the

number of spanning trees of the network N .

Given any γ-harmonic function f on a network N , we define two quantities,
the potential drop and the current as follows. If e = (p, q) is an edge, the
potential drop across e due to f is f(p) − f(q). Notice that this quantity
depends on the direction we go along the edge. The current across e due to
f is given by Kirchhoff’s Law, and it is γ(e) (f(p) − f(q)). Current flows
from the node with higher potential toward the node with lower potential.

Number the vertices of the network so that the boundary vertices are
vertices 1 through n and the interior vertices are numbered from n + 1
through M . Then we can partition K as follows:

K =

[

A B

Bt C

]

A consists of rows 1 through n and columns 1 through n, B consists of
rows 1 through n and columns n + 1 through M , Bt consists of rows n + 1
through M and columns 1 through n, and C consists of rows n + 1 through
M and columns n + 1 through M .

Notice that Theorem 1.2 guarantees the existence of a unique vector of
boundary currents given a vector of boundary potentials. It is clear that
the map which takes boundary potentials to boundary currents is linear
and therefore can be expressed as a matrix. This matrix is called the
Lambda matrix.
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Definition 1.4. The Lambda matrix Λ of a network N is the matrix
which has the following property. Given a boundary potential vector v =
[v1, . . . , vn]t, we have Λv = I, where I is a vector whose entries are the
induced boundary currents.

Theorem 1.3. Λ = A − BC−1Bt, where A, B and C are the matrices

obtained by partitioning the Kirchhoff matrix K as above.

Some properties of the Lambda matrix for a connected network

1. Λ is symmetric.

2. The row sums of Λ are all 0.

2 The network associated to a tiling of a rectangle

by rectangles

Let R be a rectangle of height h and width w, and suppose it is tiled
by finitely many rectangles R1, . . . , Rn of heights h1, . . . , hn and widths
w1, . . . , wn respectively. It is clear that the sides of the rectangles and the
sides of R will all be parallel to two perpendicular lines in the plane. Choose
one of these lines to be the horizontal axis and the other to be the vertical
axis; this gives an orientation of R.

We associate a 2-pole graph Γ to the tiling of R as follows. Associate to
each horizontal segment in the tiling a vertex. Connect two vertices if
there is a rectangle in the tiling with its top edge on the segment
associated to the first vertex and its bottom edge on the segment associate
to the other vertex. The two boundary nodes are the vertices
corresponding to the top and bottom edges of R itself. We turn Γ into a
resistor network by assigning each edge a conductivity equal to the width
of the rectangle corresponding to the edge divided by its height. Note that
if the rectangle is tiled by squares, all conductivities will be one. Note also
that the graph obtained by this process is always planar.

Theorem 2.1. Let N be the network associated to a tiling. Then the func-

tion which associates to each vertex of N the distance of the level corre-

sponding to that vertex from the bottom of R is a γ-harmonic function.
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Proof. We need to compute Ip(f) for each p ∈ V \ ∂V , where V is the set
of vertices of N. Let p ∈ V \ ∂V . Then p corresponds to some horizontal
segment s in the interior of R. Let E1 denote the set of edges with one
endpoint being p and the other endpoint being a vertex corresponding to a
segment below s; let E2 be the set of edges with one endpoint being p and
the other endpoint being a vertex corresponding to a segment above s. By
the definition of f and of γ, we have

∑

(p,q)∈E1

γ(p, q) (f(p) − f(q)) = −
∑

(p,q)∈E2

γ(p, q) (f(p) − f(q))

This common quantity is, by the definition of γ and of f , the width of
the horizontal segment s. Since we have E1 ∪ E2 = N(p), f satisfies the
conditions for a γ-harmonic function set forth in Definition 1.3.

The uniqueness of f tells us that any γ-harmonic function with boundary
values 0 and h will be identically equal to f on all of N . Thus we can
compute the levels of the tiling from the network. This is the basis of the
method we will use to construct tilings of rectangles given an arbitrary
planar 2-pole network.

Theorem 2.2. If a rectangle is tiled by rectangles all of which are commen-

surable, i.e. which have sides whose ratios are all rational, then the rectangle

itself is commensurable.

Proof. The sum of the currents flowing out of the boundary node associated
to the top of the rectangle is equal to the width w of the rectangle and is
also equal to the current flowing into the boundary node associated with the
bottom of the rectangle. The the potential drop between the two boundary
vertices is equal to the height h of the rectangle. Since all of the rectangles
in the tiling are commensurable, the conductivities in the network are all
rational. Since there are only two boundary nodes, using the properties of
the lambda matrix given above, we see that it will have the form

Λ =

[

λ1,1 −λ1,1

−λ1,1 λ1,1

]

By the properties of Λ, we must have
[

w

−w

]

= Λ

[

h

0

]

So we have λ1,1 = w
h

and since all conductivities are rational, Λ has all
rational entries, so w

h
is rational, hence the rectangle is commensurable.
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Corollary 2.3. If a rectangle is tiled by squares, then the rectangle is

commensurable.

3 Duality for networks

We will introduce the notion of the dual of a circular planar network. We will
show how this can be used to construct tilings of rectangles from arbitrary
circular planar 2-pole networks.

Definition 3.1. A circular planar graph is a graph with boundary which
is embedded in a disk in the plane so that all of its boundary vertices lie
on the circle bounding the disk. A network is circular planar if the graph
associated with it is circular planar.

Note that any circular planar graph must come with an embedding. The
embedding is crucial: two identical graphs with different embeddings into
the disk are not the same circular planar graph. Suppose N is a circular
planar network with boundary vertices v1, . . . , vn. We construct the dual
network N∗ as follows. Say N is embedded in some disk D in the plane.
Then N divides D into M regions. Place one dual vertex in each region. If
the region is partially bounded by the boundary of the disk, place the
vertex in that region on the boundary of the disk, otherwise place the
vertex in the interior of the region. So the dual graph also has n boundary
vertices and is also circular planar. Now connect the vertices as follows. If
two faces are adjacent, connect the vertices corresponding to the vertices
through the edge shared by the two faces. So there should be one dual
edge for every edge in the original graph, and the dual edges should be
perpendicular to the original edges. If e is an edge in the original graph
and e∗ is its dual edge, then assign conductivity γ∗(e∗) = 1

γ(e) to the dual
edge. Thus we have constructed the dual network. The dual network plays
a very important role in tilings of rectangles.

Theorem 3.1. Let R be a rectangle which is tiled by finitely many rectangles

R1, . . . , Rn. Suppose the network associated to the tiling of R is N . Then

the network associated to the rotation of R and all of the Ri’s by π
2 is N∗.

Proof. Postponed to the next section.
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4 The correspondence between 2-pole networks and

tiled rectangles

Here we will show how to construct a tiled rectangle from a planar 2-pole
network whose every edge carries a nonzero current when differing potentials
are applied to the poles.

Given a 2-pole network N embedded in a disk D, we will call one pole
the North pole, and the other the South pole. The East and West faces
are then defined in the obvious manner. Now, setting the potential at the
North pole to some positive Y and the potential at the South pole to 0, we
can solve for the unique γ-harmonic potential, V , that satisfies the given
boundary data.

We now define a “current potential” function J on the faces of N , and will
subsequently prove that it is indeed a function. Let J satisfy the following
properties:

1. Given adjacent faces F1 and F2 that share an edge e, the difference
between J (F1) and J (F2) is equal to the current flow in e determined
by the potential function V .

2. For adjacent faces F1 and F2, the sign of J (F1)−J (F2) should be de-
termined by a consistent convention. We will adopt the right-hand
rule, i.e., if an edge runs North-South and the North potential is
greater than the South potential, then the face to the East should
have a greater value of J than the face to the West.

3. The value of J on the West face of the bounding disc D should be 0.

To prove that J is indeed a function, we need:

Theorem 4.1. Given a series of faces F1, F2, . . . , Fn such that Fi is adjacent

to Fi+1 and F1 = Fn,
∑n−1

i=1 (J(Fi+1) − J(Fi)) = 0.

Proof. First we note that a modified version of Kirchhoff’s Current Law
holds for arbitrary sets of interior vertices in a network. Suppose we have
a given set P1, . . . , Pn of interior vertices, and we let e1, . . . , em be all the
edges having exactly one endpoint in the Pi. Furthermore, let currents flow-
ing away from a Pi along an ei have negative sign, and let currents flowing
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toward a Pi along an ei have positive sign. Then the sum of all the currents
flowing through the ei is 0.

We now establish another preliminary result. Suppose some pair of faces,
F1 and F2, has more than one edge in common. Each shared edge must
have the same current, otherwise we would have a violation of the modified
Kirchhoff’s Current Law for the set of vertices between and including the
endpoints of two of the common edges. (See Figure 1.) So no matter which
of the common edges we choose, J(F2) − J(F1) has the same value.

To prove the theorem at hand, it suffices to look at non-intersecting se-
quences of adjacent faces, i.e., the case where i, j 6= 1, n and Fi = Fj ⇒ i = j,
since any closed path of adjacent faces can be decomposed into several such
loops. Such a sequence of faces will divide the vertices of the graph into
two sets: those within the loop or on its inner edge, and all other vertices.
(Figure 2).

F
1

2
F

Figure 1: F1 and F2 have two common edges. We see the current in these
two edges is the same by applying the modified Kirchhoff’s Voltage Law on
the circled vertices.

Assume that each pair of faces F1 and F2, F2 and F3, . . ., Fn−1 and F1

only has one edge in common. (By the preceding result about faces sharing
more than one edge, it suffices to consider this case.) If we consider the
inner set of vertices as our set P1, . . . , Pn of interior vertices, we see that the

8



N

S

Figure 2: An example of a closed path of adjacent faces on a 2-pole network.
The “inner set” of vertices is marked with squares, whereas its complement
is marked with circles. The dashed curve shows one possible path of adjacent
faces and common edges.
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edges e1, . . . , em having exactly one endpoint in the Pi are exactly the set of
common edges shared by F1 and F2, F2 and F3, etc. Since J(Fi+1) − J(Fi)
is equal to the current across the common edge ei, we obtain the desired
result by application of the modified Kirchhoff’s Current Law.

By Kirchhoff’s Current Law, it can easily be seen that the theorem holds
on a loop of faces going around a single interior vertex. The set of all such
loops forms a basis for all closed paths of adjacent faces in the graph. Then
the result is immediate, thus giving another proof of the theorem.

We now know that J is a well-defined function. We will call it the stan-

dard dual potential. Functions satisfying conditions 1 and 2 of the definition
of J shall be called simply dual potentials, and in general differ from J by a
constant. We may also call a dual potential a current potential if we wish to
emphasize the property that the potential drop across a shared edge gives
the current flowing through that edge.

If we identify the faces of N with the vertices of the dual network N∗,
we see that J is a γ∗-harmonic function on the dual, where γ∗ is the con-
ductivity on N∗. Kirchhoff’s current law on N is equivalent to Kirchhoff’s
voltage law on N∗, as in the proof of Theorem 4.1, and vice versa.

Remark 4.2. If J ′ is a dual potential for a potential V , then C−V is a dual

potential for J ′, where C is an arbitrary additive constant. Y − V , where Y

is the value of V at the North Pole of N , is the standard dual potential of

the standard dual potential J of V . These facts are somewhat analogous to

the result that N is the dual of its dual N∗.

We now have a method of generating tilings from networks. Apply volt-
ages Y and 0 to the North and South poles of the network, respectively.
Then solve for the standard dual potential J , calling the dual potentials at
the West and East poles of the dual 0 and X, respectively. Let the potential
at the ends of each edge in the network represent the y-coordinates of a
rectangle, and the current potential across the corresponding dual edge rep-
resent the x-coordinates of a rectangle. From the Maximum Principle, we
see that all such rectangles must lie within a large rectangle of dimensions
X by Y .
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It remains to show every point in the rectangle, excluding the boundaries
of tiles, is tiled exactly once. We first need some lemmas.

Lemma 4.1. Every interior node in a 2-pole planar network experiences at

most two alternations of ingoing and outgoing currents as the edges termi-

nating at the node are traversed in a circular direction.

Proof. This follows very easily from the planarity of the network. Suppose
we have a node at which we have more than two alternations of current.
Then there must be at least two ingoing currents that separate at least two
outgoing currents. By Kirchoff’s Current Law, we can follow each outgoing
current along a chain of decreasing potential; each such path must terminate
at the South pole. We can also follow the two ingoing currents along chains
of increasing potential to the North pole; however, by the planarity of the
network, one of these chains of increasing potential must intersect one ofthe
chains of decreasing potential, yielding a contradiction.

Lemma 4.2. On the boundary of each face in N , we can find two vertices

Pi, Pj such that all currents on the boundary travel from Pi to Pj.

Proof. By duality, the face of N corresponds to a vertex with several edges
in the dual network N∗. By Lemma 4.1 and the right-hand rule, we obtain
the desired result.

Theorem 4.3. The tiling corresponding to a 2-pole circular planar network

N tiles a rectangle with no overlaps, excepting possibly tile boundaries.

Proof. We will say an edge e of N comprises (λ, ) if the endpoint potentials
V1

∗ and V2
∗ of the dual edge e∗ satisfy V1

∗ < λ < V2
∗. We will also say e

comprises ( , µ) if the endpoint potentials V1 and V2 of e satisfy V1 < µ < V2.
Furthermore, we will label the poles of the network P1 and P2, and the poles
of the dual P1

∗ and P2
∗. Without loss of generality, V1 > V2 and V1

∗ > V2
∗.

Now, given arbitrary λ between V1
∗ and V2

∗ and µ between V1 and V2,
where λ 6= V1

∗, V2
∗, . . . (the potentials on the vertices of the dual network),

and µ 6= V1, V2, . . ., we wish to show that exactly one edge e of N comprises
(λ, µ).

By the Maximum Principle, we see that no current flows into P1 from the
interior of the network, nor out of P2 into the interior of the network. Then,
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by duality, at each pole of N , there is exactly one edge comprising (λ, ),
as in the diagram. Furthermore, by applying Lemma 4.2 to the dual net-
work N∗ and applying the right-hand rule, we see that each interior vertex
that has one ingoing edge that comprises (λ, ) must also have one outgoing
edge that comprises (λ, ). Thus, there is a single path of descending po-
tential from P1 to P2 that comprises exactly the edges of N comprising (λ, ).

But since the potential is steadily decreasing along this path, and the
currents along the path are nonzero by the condition on λ, we find exactly
one edge on the path that comprises ( , µ). Hence, exactly one edge of N

comprises (λ, µ). Since by the algorithm outlined above, each edge e of N

corresponds to exactly one element of a tiling, and λ and µ were arbitrarily
given, we see that the rectangle is completely tiled without overlap.

We now restate and prove

Theorem 3.1. Let R be a rectangle which is tiled by finitely many

rectangles R1, . . . , Rn. Suppose the network associated to the tiling of R is

N . Then the network associated to the rotation of R and all of the Ri’s by
π
2 is N∗.

Proof. We have seen that the y-coordinates of an element in the tiling are
given by the potential across a certain edge, while its x-coordinates are given
by the standard dual potential across its dual edge. Let the rectangle R be
given by [0, X]× [0, Y ], and let the potential on N be given by V . Similarly,
the standard dual potential of V on N∗ shall be given by J .

A counterclockwise rotation of R and all the Ri’s by π
2 , followed by a

translation to keep the lower left corner of the rectangle at (0, 0), corresponds
to the interchange of (x, y) with (Y − y, x) for all (x, y). But from Remark
4.2, we see that C−V , where C is an arbitrary additive constant, must be a
dual potential for J on N∗. In particular, Y −V must be the standard dual
potential of J . Thus J on N∗ gives the vertical coordinates of the elements
of the tiling, and the standard dual potential Y − V gives the x-coordinates
of the elements of the tiling. Thus we see that all the Ri’s, as well as R

itself, are properly rotated by π
2 .
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5 Perfect and simple tilings

We will begin by using the results of the previous section to demonstrate
how to quickly compute low-order tilings of rectangles by squares, and show
how these methods can be used to quickly discover very interesting tilings.

Definition 5.1. A tiling of a rectangle is said to have order n if there are
n tiles used in the tiling.

Now that we know there is a one-to-one correspondence between tilings of
rectangles by rectangles (or squares) and 2-pole networks, we can quickly
construct all squared rectangles of a given order n by computing all 2-pole
networks with n edges and assigning each edge conductivity 1. To speed
this process, use Theorem 3.1: dual networks correspond to equivalent
tilings, so we needn’t compute them. Also, if one interior vertex of the
network has only one edge attached to it, clearly the current in that edge
will be zero so we can eliminate such networks.

Definition 5.2. A rectangle R which is tiled by squares S1, . . . , Sn is called
compound if there are squares Si1 , . . . , Sim ; 1 < m < n, such that

⋃m
j=1 Sij

is a rectangle. If there are no such squares, the tiling is called simple.

Definition 5.3. A rectangle R which is tiled by squares S1, . . . , Sn is called
perfect if no two of the squares have the same dimensions. Otherwise it’s
called imperfect.

Notice that the currents in the network associated to a perfect tiling are all
different, while in the network associated to an imperfect tiling, at least
two of the currents will be the same. This gives us a good method of
computing perfect tilings. First we can eliminate some networks which will
lead to imperfect tilings. Given any 2-pole network, we define its
completion to be the network obtained by adding an edge connecting the
poles to the network.

Properties of networks associated to simple and perfect tilings

1. The network associated to a perfect tiling has the following property:
each interior vertex has at least three neighbors.
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Figure 3: The smallest simple, perfect squaring of a square. [4]
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Proof. Suppose not. Suppose there is an interior vertex v with neighbors k

and j and no other neighbors. Solve the Dirichlet problem on the network
to get a γ-harmonic function f . Then 2f(v) = f(k)+f(j), or f(v)−f(k) =
f(j)− f(v), so the current in edge vk is the same as the current in edge vj,
so the tiling is imperfect.

Remark 5.1. The tiling is also compound: the two edges vk vj can be

made into one edge using the laws for conductors in series; this new edge

corresponds to a sub-rectangle that is tiled by the squares corresponding to

the edges vk and vj.

2. The network associated to a perfect or a simple tiling has only one
edge between any given vertices.

Proof. Suppose not. Say there are two vertices which are connected by edges
e and f . Then by the definition of current, the current in these two edges
will be the same. Also, using the laws for conductors in parallel we can
make these edges into one new edge with non-unit conductivity; this will
correspond to a sub-rectangle which is tiled by the squares corresponding to
the edges e and f .

Theorem 5.2. Let a rectangle R be tiled perfectly by squares. Then the

network associated to its tiling is asymmetric around any axis which either

avoids both poles or includes both poles.

Proof. Suppose first that the network is symmetric about an axis which
avoids both poles. Suppose f is the solution for the Dirichlet problem on
the network. Then f is symmetric about the axis of symmetry. For, if
Kirchhoff’s current laws are satisfied on one half of the network, the same
currents on the reflected half will also solve Kirchhoff’s current laws. Hence,
by uniqueness of f , if e is an edge of the network and f is its reflection about
the axis of symmetry, we must have that the current in e is the same as the
current in f , hence the tiling is imperfect. The same argument works if the
network is symmetric about an axis which includes both poles.

Remark 5.3. This proof does not work if the axis includes one pole but not

the other, for then symmetry is preserved geometrically but not electrically,

as one side of the network will have a pole but the reflected side will not.

We can now compute many different perfect and simple perfect rectangles.
It is clear that a perfect rectangle of least order is simple; if it contained a
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Pole 1

Pole 2

This network is symmetric 
about the dotted axis.

Pole 1

Pole 2

This network is not 3-connected.  
Removal of the edge which is pointed to
and the dotted edge which is added to

form the completion disconnects the network.

Figure 4: Here are some networks that yield imperfect tilings.

Pole 1

Pole 2

This network is compound.
The dotted line separates
the two squared rectangles
which are put together to
form the compound squared
square.

Figure 5: Here is a network which yields a compound tiling.
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sub-rectangle then the sub-rectangle would also be tiled perfectly and
would have lower order. Using Theorems 5.1 and the properties above to
eliminate many networks, we find

Theorem 5.4. There are no perfect rectangles of order less than 9 and

precisely two of order 9.

32

0 9

1714

10

10

4

18

15

7

8

1

61

45

38

3336

0

9

2

36

33

5

16

7

9

14

Pole 1

Pole 2 Pole 1

Pole 2

Figure 6: Here are the networks for the two order 9 (simple) perfect tilings.
Notice the asymmetry of these networks. Plain text denotes potentials,
while text in italics denotes currents.

Now we will discuss simple tilings and see which networks correspond to
simple tilings and which correspond to compound tilings.

Theorem 5.5. If a network N contains a sub-network M which has more

than one vertex but not all of the vertices and which is connected to the rest

of the network at only 2 vertices, then the tiling associated to N is compound.

Otherwise it’s simple.

Proof. Suppose N contains a sub-network M as above. All of M has some
effective conductivity which can be determined by treating M as a 2-pole
network and looking at its Lambda matrix. Say it has conductivity γ1.
Replace M by a single edge e of conductivity γ1. Then the flow in N is
the same as before, but instead of the squares associated to the edges of
M we have one big rectangle. Since the flow is the same, the potentials at
the vertices of e are the same as they were before the substitution, so all
of the rectangles corresponding to edges in M must have formed a tiling of
the new rectangle associated to e. Since e is not the only edge in the new
network, the rectangle associated to e is not the whole rectangle which is
tiled, so the tiling is compound. Also, it is clear that any compound tiling
must have such a sub-network. Hence the proof is complete.
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Remark 5.6. If N contains a sub-network as above connected to the rest at

only one vertex, clearly the current flow in this sub-network will be identically

zero, so we can safely eliminate all such networks.

Theorem 5.7. Let a rectangle R be tiled perfectly and simply by squares.

Then the completion of the network associated to its tiling is 3-connected,

that is, if any two edges are removed the network remains connected. The

same is true of the dual of the completion.

Proof. Suppose the completion is not 3-connected. Then it’s either 1-connected
or 2-connected. If it’s 1-connected, then there is an edge e whose removal
disconnects the graph. Certainly e cannot be the added edge joining the
poles, so it must be one of the edges of the original graph. Since its removal
disconnects the completion of the graph, it must be part of some path in
the graph which eventually terminates at an interior node. But then, by
Kirchhoff’s current laws, the current in this path must always be 0, so the
current in e is 0. Thus this network cannot be that of a tiling. Now suppose
that the network is 2-connected. Then there are two edges e and f whose
removal disconnects the graph. If one of these edges is the edge connecting
the two poles, then the other one must be an interior edge, so its removal
disconnects the original graph. Thus it must be the case that there is a part
of the graph connected to the rest at only 2 vertices, so the tiling is com-
pound by Theorem 5.3. Now suppose both e and f are interior edges. Since
their removal disconnects the completion, it becomes divided into at most
three connected sections. One of these sections does not contain either pole,
since the poles are connected in the completion. This section is connected
to the rest of the completion at no more than two vertices, so the tiling is
compound by Theorem 5.3. That the same holds true of the dual is a trivial
consequence of Theorem 3.1.

6 Medial graphs and their relation to tilings

Suppose Γ = (V, ∂V, E) is a circular planar graph with n boundary nodes
v1, . . . , vn which occur in clockwise order around a circle C inside of which
Γ is embedded.

Definition 6.1. The medial graph M (Γ) of a circular planar graph Γ as
above depends on the embedding and is defined as follow. For each edge e

of Γ, let me be its mid-point. Place 2n points w1, . . . , wn on C so that

w1 < v1 < w2 < w3 < v2 < . . . < w2n−1 < vn < w2n < w1
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in the clockwise circular order around C. Then the vertices of M (Γ) are
{me}e∈E ∪ {wi}1≤i≤2n. Two vertices me and mf are connected whenever e

and f share a common vertex and are incident to the same face in Γ. Each
vertex of the form wj has one edge emanating from it. w2i is connected to
me, where e is the edge of the form vir so that e comes first after the arc
viw2i−1 on C in the clockwise direction around vi. w2i−1 is connected to
mf , where f is the edge of the form vis so that f comes first after the arc
viw2i−1 in the counter-clockwise direction around vi.

Notice that all vertices of the form me are the interior vertices and are all
4-valent, i.e. they all have 4 edges emanating from them. The boundary
vertices, those of the form wj , are all 1-valent, i.e. they all have 1 edge
emanating from them. The medial graph encodes both the original graph
and its dual. The medial graph divides the circle C in which it is
embedded into a number of regions. These regions can be 2-colored.
Suppose we color them black and white. Then if we place one vertex in
each black region, making sure to move vertices in regions partially
bounded by an arc of C out onto C itself, and connect two vertices if and
only if the two regions associated with them share a common vertex, we
will obtain the original graph (or the dual graph, depending on the
coloration). If we do the same with the white regions, we will obtain the
dual of the original graph (or the original graph itself, depending on the
coloration). So the two graphs thus obtained are always dual to each other.

Definition 6.2. An edge vw of the medial graph M(Γ) is a direct extension

of another edge uv if the edges uv and vw separate the other two edges
incident to v. A path v0v1 . . . vn in M(Γ) is called a geodesic arc if each
edge vivi+1 is a direct extension of the edge vi−1vi ∀1 ≤ i ≤ n − 1. A
geodesic arc v0v1 . . . vn is called a geodesic if either v0, vn ∈ C or if v0 = vn

and v0v1 is a direct extension of vn−1vn.

We will now discuss a method to obtain the medial graph of the network
associated to a tiling of a rectangle directly from the tiling, without having
to first construct the network. Place one vertex in each square (or
rectangle) of the tiling and place one boundary vertex at each corner of the
rectangle. Start in the upper left hand corner and continue to the right.
When one reaches the end of the rectangle, go down another level and
continue to the right until finished connecting vertices. Always obey the
following rules:
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1. Connect two vertices only when the associated squares share part of
an edge.

2. Give priority to horizontal connections over vertical ones.

The vertices in the corners connect only to the squares (rectangles) in the
corners. Each interior vertex has four edges emanating from it, one going
towards each corner of the square the vertex is in. Connect the edge going
towards vertex v of the square to a vertex in a square which shares vertex
v with the original square and which also shares part of an edge with it. If
there are many such squares, pick the one that will form a horizontal
connection, using Rule 2 above. But never allow any vertices to have more
than 4 edges incident to them. If we continue the edges in the natural way,
by continuing diagonally through the square and connecting vertices as
described above, we will obtain the geodesics of the medial graph. Thus
not only can we quickly construct the medial graph, but we can discover
the geodesics with ease.

7 Multiple-pole networks and tiling other regions

The results above have been discussed only for two-pole networks, but with
suitable care, it is possible to generalize them to networks with arbitrarily
many boundary nodes.

Consider a simply connected polygon having only 90-degree angles and
tiled by a certain number of rectangles. (At this stage, we only require
that each region of the polygon be tiled at least once.) We will call an el-
ement of the tiling an interior rectangle if both its top and bottom edges
are completely shared with the edges of other rectangles. An element of the
tiling that does not satisfy this property shall be called a boundary rectangle.

Letting the height of each rectangle represent the potential drop across
an edge in an electrical network, and its width represent the associated cur-
rent flow, we see that each interior rectangle obeys Kirchhoff’s Current Law,
and is thence identified with an interior node of a network. Similarly, each
boundary rectangle does not obey Kirchhoff’s Current Law, and must there-
fore correspond to a pole of the network. Any of the constructions outlined
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in the sections above may be used to construct tilings from multi-pole net-
works, although certain constraints must be imposed to obtain well-behaved
tilings.

It may be easily seen that the shape of the tiled polygon depends not only
upon the electrical network specified, but also upon the given boundary data.
If inappropriate boundary data are specified, the polygon will intersect itself,
yielding an ill-behaved tiling in which some regions are multiply covered.
The reasonable question to ask, then, is under which conditions we may
expect to obtain well-behaved tilings.

Theorem 7.1. The tiling associated with a general circular planar network

will be a proper tiling if there are only two alternations in the sign of the

boundary currents, i.e., if we can decompose the circular boundary into two

arcs such that all the nodes on one arc have positive current flow, and all

the nodes on the other have negative current flow.

Proof. First we number the current-carrying poles of N clockwise around
the boundary of the disc such that P1, P2, . . . , Pm contain positive (ingoing)
currents, and Pm+1, Pm+2, . . . , Pn contain negative (outgoing) currents. We
then number all other vertices (including the poles carrying zero current)
however we please.

Now if V1 = V2, we identify the two vertices to get a single new vertex
(call it P ′

2) at potential V2. If currents I1 and I2 entered at P1 and P2 be-
fore, we now let current I1 + I2 enter at P ′

2. If V1 > V2, add a new edge of
conductance I2

V1−V2
joining P1 and P2, and let current I1 + I2 enter at P1

(henceforth call it P ′
2). Similarly, if V1 < V2, join the vertices with an edge

of conductance I1
V2−V1

, and let current I1 + I2 enter at P2 (henceforth call
it P ′

2). In this process, the current and potential at all other nodes remains
unaffected. Now repeat the process for V ′

2 and V3, then V ′
3 and V4, etc., until

we have a single node V ′
m that carries positive current.

Now we follow a similar process for the poles Vm+1 through Vn, excepting
that the currents are outgoing instead of ingoing as in the above paragraph.
We then end up with the current flow of the original network N subsumed
within the current flow of a 2-pole network. We thus have a rectangle R

tiled properly by rectangles. Since some edges were added to the network
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in this argument, we must strip away the elements corresponding to those
added edges to recover the tiling corresponding to the original network N .
We thus have a proper tiling of some sort of polygonal region.

We expect the converse of the above theorem to be true; more about
this will be said in the next section.

The theory of multi-pole tilings may be extended to certain planar net-
works that are not circular planar. In order to get nondegenerate tilings,
“nested circular planar” networks must be considered. Such a network must
be embedded in a disc that has zero or more circular holes in it. The poles of
the nested circular planar network must lie on the boundary of the surface
(whether that be the exterior edge of the disc, or the edges of the holes;
see Figure 7). Furthermore, to obtain well-behaved tilings for this case, we
require that the sum of the net current flows on the boundary nodes of each
bounding circle be zero. The resulting tiled region will not, in general, be
simply connected; each hole in the tiled region corresponds to one of the
holes in the disc in which the network is embedded.

Figure 7: A nested circular planar graph. Dots mark interior nodes, and
stars mark boundary nodes.

8 Future directions

Here we will discuss some directions, unfinished work, and generalizations.
We will begin by discussing the promised converse of Theorem 7.1. We have
not been able to prove it, but it appears to be true.
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Theorem 8.1. If we are given a circular planar network N with n bound-

ary nodes so that there are m alternations in the direction of the boundary

currents as we go around the circle, then we will obtain a tiled region which

has a part that is tiled m − 1 times by rectangles.

One of the ideas we wanted to use to prove this theorem was to consider
the medial graph. Once we constructed the medial graph, we’d 2-color the
faces. One color would correspond to the original graph and the other color
would correspond to the dual. Then we could solve the appropriate Dirichlet
problems for the original graph and its dual and place the solutions in the
faces of the medial graph. Then by going around the faces of the medial
graph which touched the bounding circle, we would be able to draw out the
region which was tiled. (See Figure 8.) We would do this by considering a
complex-valued function f : E → C on the edges of the medial graph which
was defined as f = J + iv. Since each edge is part of precisely two faces,
each of one color, f can be well-defined by the formula above. Further, f

satisfies a discrete version of the Cauchy-Riemann equations and is discrete
analytic in a suitable sense. For, we have Jx = vy and Jy = −vx using the
right-hand rule for current flow. If we trace the graph of f when we go
around the outer regions of the medial graph, we get a region in the plane
which should be the region tiled by the network. If there are m alternations
in the directions of current flow at the boundary, there should be a part of
this region which is tiled m − 1 times. We hoped that in the graph itself, if
there were many alterations in the direction of current flow, there would be
an vertex in the graph itself which was a saddle point, that is, which had
many alterations in the direction of the current flow. This was not true,
however; see the figure on the next page.

The above approach was motivated by an analogy to the concept of
winding number in complex analysis — if the winding number is 1, then the
tiling is nondegenerate. Another analogy is to somehow define the concept of
an outward-pointing normal vector, and then to make sure that this vector
undergoes 1 complete rotation when the boundary of the medial graph is
followed in a circular fashion, again yielding a nondegenerate tiling. We
postulate that the potential and associated current flow (the differences of
the current potential) on a medial graph can be characterized in terms of
sign relations between their derivatives and second derivatives, in analogy
with the sine and cosine. For our purposes, we would define the derivative
of a potential as its increase between two successive colored cells on the
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Figure 8: An example of a potential and its dual placed on the faces of a
medial graph. Note that each potential drop is equal to its dual potential
drop — if all conductivities were not 1, we would see a corresponding scale
factor at each vertex.

24



0

0

0
183637

183637

-183637

55211

19102

19033

11406

70076

26591
11174

18105
21266

6035

Boundary Node Boundary Node

Boundary Node

Boundary Node

Boundary Node

Boundary Node

Figure 9: A counter-example to the existence of saddle points. There are no
saddle points in this graph even though there are alterations in the direction
of current flow on the boundary nodes. All vertices have only two alterna-
tions in current direction. The arrows indicate the direction of current flow;
the numbers are the potentials induced by the given boundary potentials.

25



boundary, and its second derivative as the increase between two successive
derivatives. Although the conjecture seems to hold for the examples we have
looked at, not enough work has been done in this area to merit a detailed
discussion.

One way of obtaining tilings is to ignore the network and the dual network
and only use the medial graph. Once we have a medial graph, we can
2-color it; say it has black cells B1, . . . , Bn and white cells W1, . . . , Wm.
Each white cell Wi has potential vi, while each black cell Bi has dual
potential Ji. If we wish to generalize to tilings by rectangles instead of by
squares, it will be necessary to assign a “conductivity” to each vertex of
the medial graph. By simply using the right-hand rule, we can obtain an
equation relating the potentials to the dual potentials at each vertex of the
medial graph. Given fixed boundary potentials on either the white cells or
the black cells, we can solve the system of equations thus obtained
uniquely and obtain the potentials and dual potentials for our medial
graph. Then hopefully we could trace out the figure being tiled as above,
and tile it by going around each vertex in a circular manner, visiting all
the edges and plotting the graph of f to draw the tiles. They would all
correspond to squares (or rectangles) since the vertices of the medial graph
are all 4-valent, so we’d get a tiling by squares (or rectangles) every time.

We can also obtain an electrical network for higher-dimensional tilings.
However, its usefulness has not been determined. To obtain this network,
we proceed inductively. We have already established it for 2-dimensional
tilings, so we induct on the dimension of the region being tiled. An
n-dimensional box tiled by n-dimensional cubes should correspond to an
(n − 1)-dimensional complex embedded in Rn. Every slice of the box
parallel to one of its faces gives us an (n − 1)-dimensional box tiled by
(n − 1)-dimensional cubes. Now inductively, these slices should correspond
to (n − 2)-dimensional complexes embedded in Rn−1. If we “piece
together” these complexes in some suitable sense, we should get an
(n − 1)-dimensional complex which corresponds to the original tiling of the
n-dimensional box. This complex can clearly be embedded in Rn. We have
m-dimensional parts of this complex corresponding to (m + 1)-dimensional
parts of the tiling. If we assign width and length to some of the faces of
the complex, it should be possible to formulate a definition of harmonicity
on it. Then we would be able to solve the Dirichlet problem on the
complex and as before, the solution would hopefully correspond to the
position and size of the boxes in the tiling. We shoould be able to recover
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a tiling from an appropriate complex by choosing an orientation and
slicing the complex parallel to the chosen orientation. Then we will obtain
a complex of one less dimension, so inductively we can form a tiling. Then
we can just piece together all of these tilings to form a tiling of a box.
Since we will tile the box by only finitely many cubes, we only have to
piece together finitely many different pieces. Thus using this method for
computational purposes is feasible.

27



References

1. R.L Brooks, C.A.B. Smith, A.H. Stone and W.T. Tutte, The Dissec-

tion of Rectangles into Squares, 1940.

2. E.B Curtis and J.A. Morrow, Determining the resistors in a network,
SIAM J. of Applied Math., 50 (1990), pp. 918-930.

3. E.B. Curtis, D. Ingerman and J.A. Morrow, Circular Planar Graphs

and Resistor Networks, 1994.

4. E.W. Weisstein, http://www.astro.virginia.edu/˜eww6n/math/PerfectSquareDissection.html

28


