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Abstract

P. J. Federico used the term low-order for perfect squared squares with at least
28 squares in their dissection. In 2010 low-order compound perfect squared squares
(CPSSs) were completely enumerated. There are a total of 207 low-order CPSSs
found in orders 24 to 28. In 2012 CPSSs were enumerated to order 29. A total
of 413 CPSSs were found in order 29. All together there are 620 CPSS, (up to
symmetries of the square and its squared subrectangles), in the order twenties, from
order 24 to 29.
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Figure 1: T. H. Willcocks order 24 CPSS, side 175, 1 of 4 isomers, (1948):
bouwkampcode; (81,56,38)(18,20)(55,16)(1,5,14)(4)(39)(51,30)(29,31,64)(43,8)(35,2)(33)
tablecode; 24 175 175 81 56 38 18 20 55 16 1 5 14 4 39 51 30 29 31 64 43 8 35 2 33

1 Definitions and Terminology

1.1 Squared rectangles and squared squares

A squared rectangle is a rectangle dissected into a finite number, two or more, of squares,
called the elements of the dissection. If no two of these squares have the same size the
squared rectangle is called perfect, otherwise it is imperfect. The order of a squared
rectangle is the number of constituent squares. The case in which the squared rectangle
is itself a square is called a squared square. The dissection is simple if it contains no
smaller squared rectangle, otherwise it is compound.

A squared square which is both compound and perfect is called a compound perfect

squared square (CPSS).
By a result of Dehn[17], a rectangle can be tiled by a finite number of squares if and

only if the rectangle has commensurable sides. From commensurability it follows that
the squared rectangles sides and elements can all be given in integers. Since the first
perfect squared rectangles were published by Z. Moroń[40] two conventions have been
followed; expressing the rectangle sides and elements in integers without any common
divisor (unless some reason requires otherwise), and writing the length of the side of an
element centered inside that square in illustrations.
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Figure 2: Lady Isabel’s Casket solution

1.2 Isomers of compound perfect squared squares

A CPSS can be rotated and reflected in 8 ways creating a isomorphism class of equivalent
dissections, we call this the CPSS class. Any smaller squared rectangles within the CPSS
can also be independently rotated and reflected creating an additional isomorphism class
of CPSSs with equivalent elements, we call this the CPSS isomer class. We say each
member of that class is an isomer of the CPSS. We allow a single CPSS representative to
stand for all the members of the CPSS class and the CPSS isomer class. Sometimes the
isomer count is also given, that is, the number of members of the isomer class of a CPSS.
See subsection 3.7 for further details. The method of selecting the CPSS representative
from the CPSS isomers is given in subsection 3.8.

2 History of CPSS Discoveries: 1902 - 2013

1902

H.E. Dudeney published a puzzle called Lady Isabel’s Casket that concerns the
dissection of a square into different sized squares and a rectangle. According to
David Singmaster[43] ’Lady Isabel’s Casket’ appeared first in Strand Magazine
January 1902 and is the first published reference dealing with the dissection of a
square into smaller different sized squares. ’Lady Isabel’s Casket’ was also published
in The Canterbury Puzzles[18] in 1907. (See Figure 2).

1903

Max Dehn studied the squaring problem[17] and proved; A rectangle can be squared
if and only if its sides are commensurable (in rational proportion, both being integer
multiples of the same quantity). He also proved that if a rectangle can be squared
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Figure 3: Z. Moroń’s Rectangle I, Rectangle II

then there are infinitely many perfect squarings. This result has been generalised
and extended, see Wagon [54].

1907-1917

S. Loyd published The Patch Quilt Puzzle; A square quilt made of 169 square

patches of the same size is to be divided into the smallest number of square pieces

by cutting along lattice lines, find the sizes of the squares.. The answer, which is
unique, is composed of 11 squares with sides 1,1,2,2,2,3,3,4,6,6,7 within a square of
13. It is imperfect and compound. Gardner states that this problem first appeared
in 1907 in a puzzle magazine edited by Sam Loyd. David Singmaster credits Loyd
with publishing Our Puzzle Magazine in 1907 - 08. This puzzle also appeared
in a publication by Henry Dudeney as Mrs Perkin’s quilt[56, 6], Problem 173 in
Amusements in Mathematics[19] (1917).

1925

Zbigniew Moroń published a paper[40], where he gave the first examples of rectan-
gles divided into unequal squares. Rectangle I is 33 x 32 in size and is divided into
9 unequal squares. Rectangle II is 65 x 47 and has ten squares. See Figure 3.

Moroń asked the question “For what squares is it possible to dissect them into
squares?”. He then observes “if there exists a rectangle (of different sides) for which
there are two dissections R1 and R2 such that; in neither of these dissections does
there appear a square equal to to the smaller side of the rectangle and, each square
of dissection R1 is different from each square in dissection R2, then the square is
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dissected into squares, all different.”

1930

Kraitchik[33] published the proposition, communicated to him by the Russian
mathematician N. N. Lusin, that it was not possible to divide a square into a
finite number of different squares.

1931-1932

A Japanese mathematician Michio Abe, published 2 papers[1, 2] on the problem.
He produced over 600 squared rectangles, in his second paper he gave simple perfect
squared rectangle with sides 195 x 191 and showed how it can be used to construct
an infinite series of compound squared rectangles with the ratio of sides approaching
one in the limit.

1937-1939

A number of publications on the problem of squaring the square appeared in Ger-
many by Jaremkewycz, Mahrenholz, Sprague[30], A. Stöhr[48], H. Reichardt and
H. Toepkin[49, 41]. Following these publications, R.P. Sprague published[45] his
solution to the problem of squaring the square. Sprague constructed his perfect
solution using several copies of various sizes of Z. Moroń’s Rectangle I (33x32),
Rectangle II (65x47) and a third order 12 simple perfect rectangle (377x256) and
five other elemental squares to create an order 55, compound perfect squared square
(CPSS) with side 4205 (Figure 4).

In the same year the minutes of two different meetings of the Trinity Mathematical
Society at Trinity College, Cambridge University announce the discoveries of some
perfect squared squares. On 13 March 1939, the minutes[47] record A. Stone’s
lecture: "Squaring the Square" where he announces R. Brooks’s squared square
with 39 elements, a side of 4639 and containing a perfect subrectangle (a CPSS).

1940

Four undergraduates at Trinity College Cambridge, R.L. Brooks, C.A.B. Smith,
A.H. Stone and W.T.Tutte published the classic paper The Dissection of Rectan-

gles into Squares[42]. They published an empirically constructed order 26 CPSS,
side 608, (attributed later to Tutte) and referred the use of 2 order 13 SPSRs
with different elements to construct a Moroń R1, R2 dissection CPSS of order
28 (attributed later to A.H. Stone) with side 1015[36](Figure 5) and mentioned
a second CPSS, also with side 1015. By associating a squared rectangle with a
certain type of electrical network they developed an extensive theory of squared
rectangles which combined the theory of planar graphs and of electrical networks.
By exploiting rotational symmetry in a 3-pole electrical network they developed
methods for creating perfect squared squares in order 30’s and above (both CPSSs
and SPSSs). The theory was generalized to a variety of non-rectangular dissections
and in particular to triangled equilateral triangles in later papers[51].

Later in the same year Tutte published[36] his solution to problem E401 which
included the previously mentioned second CPSS of order 28, also with a side of
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Figure 4: Sprague’s Order 55 CPSS

1015 but almost completely different to Stone’s 1015. When compared element by
element these two CPSSs have only 2 elements in common.

1946-48

C.J. Bouwkamp published a series of papers [9, 11, 12, 10] in which he discussed
methods for constructing squared rectangles and perfect squared squares. He gave
a bouwkampcode listing[12] of the CPSS of order 39 with side 1813 discovered by
Brooks, Smith, Tutte and Stone, but not shown in their 1940 paper.

1948

T.H.Willcocks, published[57] his discovery of a CPSS side 175, of order 24. It
was constructed by overlapping two squared rectangles, one perfect and the other
containing a single trivial imperfection involving a corner square. It held the record
as the smallest known size and lowest order perfect squared square for the next
thirty years, and was eventually found to be the CPSS of lowest possible order. See
Figure 1 on page 2.

1950

W.T. Tutte published ’Squaring the Square’[52]. In this paper he described in
more detail the general methods by which a square may be dissected into (smaller
unequal non-overlapping) squares. Some new examples of such dissections were
given. These included a CPSS of order 28 with side 1073. He also gave a CPSS of
order 29 with side 1424, but the bouwkampcode is incorrect and most likely refers
to a CPSS of order 29 with side 1399, later attributed to Federico.
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Figure 5: Tutte’s 26:608 and Stone’s 28:1015 (1940)

1951

T.H.Willcocks, published[58] his account of the methods he used to construct
CPSSs of low order with small sizes. He included a number of new squared squares,
these included his discovery of a new CPSS of order 26 with side 492, 4 new CPSSs
of order 27 with sides 849, 867, 872 and 890, and a new CPSS of order 28 with side
577.

1963

P.J. Federico published[21] a paper in which he also provided a detailed account
of CPSS construction methods. Federico gave a new general empirical method, by
means of which 24 perfect squares of order below 29 were constructed. The CPSSs
he gave in his paper included two new CPSSs of order 25, one with a side of 235
and the other with a side of 344, a new CPSS of order 26, with side 384, 7 new
CPSSs of order 27 with sides 325, 408, 600, 618, 645, 648 and 825, then 11 new
CPSSs of order 28 with sides 374, 714, 732, 741, 765, 765, 824, 1071, 1089, 1113
and 1137. He also gave 2 CPSS, both with a size of 1166, but the bouwkampcode
was unconstructable. Federico defined the term low order [21, p.350] to mean the
squared squares below order 29, he stated “this limit was chosen to avoid too long
a list”, and he also noted “twenty-nine perfect squares of order 29 were collected
without attempting to apply fully the methods to this and higher orders”. He only
gave one example of a particular order 29 CPSS, size 468, indicative of the methods
being illustrated in the list at the end of the paper. However in the paper itself he
indicated how 7 new order 29 CPSSs were found, and gave sufficient information
to work out their sizes, which were; 704, 724, 1341, 1377, 1412, 1457 and 1516.

1964

7



L’Udovit Vittek from Bratislava, Czech Republic also published[53] a CPSS of order
25 with size 235. This is the same order 25 size 235 published by Federico. Priority
is given to Federico due to earlier publication.

In 1964 P. J. Federico[22] published a CPSS with side 429 of order 26 using a type
of Fibonacci sequence construction published by S. Basin [7] in 1963.

1965-69?

E. Lainez, a Spanish engineer, constructed 2 CPSSs with sides 360, 460 of orders
26 and 27 respectively[28, p.67].

1972

In 1972 N.D. Kazarinoff and R. Weitzenkamp[?] used a graph theory analysis to
limit the classes and specific cases of network that needed to be considered for
graph generation and electrical network calculations on computer. In so doing
they proved the non-existence of a CPSS of order less than 22.

1979

P. J. Federico published [23] "Squaring Rectangles and Squares, A Historical Re-
view with Annotated Bibliography" in Proceedings of the Conference held in hon-
our of Professor W.T. Tutte on the occasion of his sixtieth birthday. This was a
comprehensive historical account of the problem of dividing a rectangle or squares
into unequal squares. There was a detailed bibliography, extensively annotated by
the author. The paper included all the latest developments, including Duijvestijn’s
1978 discovery of the lowest order SPSS of order 21[20]. The paper also contained
a number of tables. The table [23, p. 187] which we reproduce as Table 1 on page 8
contains counts of perfect squares in each order known in 1977. Compound 1 and
Compound 2 refer to whether the compound perfect squared squares contain either
1 or 2 subrectangles.

Table 1: Number of Known Perfect Squares to Order 31
(1977)

Order Simple Compound 1 Compound 2

24 0 1 0
25 8 2 0
26 28 10 1
27 6 19 0
28 0 33 4
29 0 49 1
30 0 19 14
31 4 36 1

1979

P. Leeuw published his bachelor thesis[34] which proved that Willcocks 24:175
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solution is the lowest order CPSS and the only CPSS of order 24. In his thesis
[34, p.6] Leeuw stated "The idea of this way of solving the problem comes from
P.J. Federico, the mapping into the computer, the development of the neccessary
algorithms is performed by A.J.W. Duijvestijn and P. Leeuw." Leeuw’s thesis was
republished in a more expository form in the 1982 paper with Duijvestijn and
Federico. This collaboration established the sought result; the Willcocks order 24
CPSS was produced and printed in the following manner[34, p.25];

8468469*11*111,94(0,81)(30,51)(64,31,29)(8,43)(2,35)(33)
8468468*13*111*94*(56,55)(16,39)(38,18)(3,4,9)(20,1)(5)(14)
The zero in the first line acted as a placeholder for the subrectangle in the second
line.

The thesis methods produced 1883 CPSS, of these, 1942 were new, printed in the
same manner as above but not shown in the paper.

1982

A.J.W. Duijvestijn, P.J. Federico, P. Leeuw published[3] their research into the
lower limit of the order of compound perfect squared squares. This work was based
on the 1979 thesis[34] by P. Leeuw, gave the same results with more extensive
expository examples and some extra details on the CPSSs found.

Compound squares were considered separately in two types: Type 1, those that
have only one subrectangle, and Type 2, those that have two subrectangles not
having any element in common. The Type 2 did not produce any new CPSSs
below order 30, so the work concentrated on Type 1. These were generated by
using a modified electrical theory to transform squared rectangles into squared
squares with one or more subrectangular inclusions. These are called deficient
squares.

A deficient square is designated with a capital D and the number of squares in the
deficient, which gives the order of the deficient. For example a Type 1 D15 is a
deficient (squared) square with 15 squares and one subrectangle. A deficient with
two subrectangles is designated with two D capitals (DD). If the included rectangle’s
aspect ratio could be matched to a perfect squared rectangle from known tables,
then it could be scaled to fit in the deficient subrectangle. If a fit was found, and no
two elements in the whole dissection were the same size, then a compound perfect
squared square had been produced.

The task Duijvestijn, Federico and Leeuw set themselves was to find the lowest
order CPSS. They achieved this by completely searching orders up to 24. They went
beyond order 24 up to order 33, but they were not able provide definitive answers on
orders higher than 24 as their squared rectangle tables only went to order 18. Their
methods did however produce many higher order CPSSs. Duijvestijn, Federico and
Leeuw stated they found 1942 new CPSSs, but only published two in their paper
(26:483 and 28:816). The first table of their paper lists Type 1 results and the
second table lists Type 2 results, and the third table lists the total number known
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by order at the time, with a breakdown of the 1942 newly discovered CPSSs by
order. Listings of the bouwkampcodes of those 1942 CPSSs are not given. See also
the same Type 1 and Type 2 totals in Leeuw’s thesis[34, Page A-7]. On [3, page
25], the 1982 paper states that even within the scope of the program the results
were possibly incomplete, "Numbers in italics are in those combinations of D’s and
rectangles that were not completely canvassed"; In the original table combinations
of D’s and rectangles from order 26 to 33 have been underlined, we take this as
the reference to italics. In the reproduction of that table below, we have put the
underlined entries in italics.

The first table (Table 1 in the 1982 paper) is reproduced here and referred to as
Table 2;
From Table 2 it is clear that Willcock’s order 24:175a CPSS had been found using

Table 2: Results for Type 1 Squares (1982)

D 24 25 26 27 28 29 30 31 32 33 Total
6 0 0
7 0 0 0
8 0 0 2 2
9 0 0 1 2 3
10 0 0 2 1 4 7
11 1 0 2 1 2 15 21
12 0 1 0 5 3 8 42 59
13 0 1 2 3 8 13 32 86 145
14 0 0 1 8 9 29 46 131 214 438
15 0 0 2 5 21 74 68 91 294 768 1323
Total (1)a 1 2 12 25 47 139 188 308 508 768 1998
Old (in)b 1 2 10 18 24 38 16 1 0 5 115
New c 0 0 2 7 23 101 172 307 519 763 1883
Old (out)d 0 0 0 1 9 11 3 38 8 50 120
Total (2)e 1 2 12 26 56 150 191 346 516 818 2118

(a) Results of program
(b) Squares in Total (1) already known
(c) Difference
(d) Known squares outside scope of program
(e) Total squares now known

this process. The two order 25 CPSSs found by Federico in 1962 (25:235a and
25:344a) were also found, but as perfect squared rectangles (PSR) for order 19
were not available at the time, it was possible that a D6 might combine with one
or more order 19 PSRs or a D16 might combine with an order 9 SPSR to produce
more order 25 CPSSs. We now know[5] that this is not possible, and order 25
CPSSs were completed in 1962 by Federico.
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Table 2 shows Order 26 has two new discoveries, one of them, 26:483a, is shown
in the paper[3, p.25]. The other is not shown. There were 10 Type 1 CPSSs
of order 26 known at the time, these were found by Federico (4), Willcocks (1),
Bouwkamp (4), and Lainez (1). Federico and Willcocks had already published
their discoveries, (except for 26:638a by Federico). Bouwkamp’s CPSSs all featured
deficients of low order (D8, D9, D10), and are undated and unpublished, we assume
they were constructed by hand prior to 1977. If we classify Bouwkamp’s 4 CPSSs
by which deficient order they belong to, they are fully accounted for in Table 2.
Only one Type 2 exists in order 26 CPSS, Tutte’s 26:608a, and it was found. CPSSs
constructed from D6 and D16 were not in the scope of Leeuw’s program and were
not produced until years later by Skinner, when as we now know, he completed the
process of discovery in order 26 CPSSs, finding two D6 CPSSs (26:480a, 26:648a)
and one D16 CPSS (26:493a).

Table 3: Type 1 and 2 Results for Orders 24 -29 in 1982 and 2010, 2012

Order 24 25 26 27 28 29
D / Year 1982 2010 ’82 ’10 ’82 ’10 ’82 ’10 ’82 ’10 ’82 ’12

D6 0 0 - 0 - 2 - 3 - 12 - 22
D7 0 0 0 0 - 0 - 0 - 2 - 3
D8 0 0 0 0 2 2 - 0 - 11 - 24
D9 0 0 0 0 1 1 2 2 - 4 - 11
D10 0 0 0 0 2 2 1 1 4 6 - 22
D11 1 1 1 1 2 2 1 1 2 3 15 18
D12 0 0 1 1 0 0 5 5 3 5 8 10
D13 0 0 0 0 2 2 3 3 8 7 13 16
D14 0 0 0 0 1 1 8 8 9 8 29 29
D15 0 0 0 0 2 2 5 5 21 21 74 70
D16 - - - 0 - 1 - 8 - 23 - 36
D17 - - - - - 0 - 6 - 15 - 35
D18 - - - - - - - 4 - 12 - 30
D19 - - - - - - - - - 9 - 37
D20 - - - - - - - - - - - 46

In scope 1 1 2 2 12 12 25 25 47 50 139 143

Type 2 0 0 0 0 1 1 0 0 4 5 0 3

Total 1 & 2 1 1 - 2 - 16 - 46 - 143 - 412

In Table 3 we compare CPSSs of Type 1 found in 1982 to those found in 2010
and 2012, according to the number of deficient squares found in each order 24
to 29. In the 1982 results the range of deficient squares narrows as the order
increases because the orders of squared rectangles needed for substitution into, and
generation of deficient squares, increases as the order of the CPSS increases, and
squared rectangle catalogues did not exist past order 18 at the time.

We have not attempted an analysis of the 1982 paper results on orders 30, 31, 32
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and 33 because these orders are still incompletely enumerated.

Using Table 3 on page 11 we can compare deficient square totals of CPSSs of order
26, in the D8 to D15 range, from 1982 to those of 2010. We find there are the same
number, 12 of them, and the numbers in each deficient square order match exactly.

This leaves just the other unpublished discovery of the 1982 paper to be accounted
for in order 26. The only remaining position for it in the table is for another D15.
We now know it is 26:512a, (See Figure 7 on page 16). It was also found by Ian
Gambini in 1999, given implicitly in an isomer count [26, p.25, Tab. 2.6], but he
did not identify it. It remained generally unknown until rediscovered for the third
time by Anderson and Pegg in 2010[5].

The 1982 paper’s results for order 27 featured 25 Type 1 CPSSs in program scope
from D9 to D15. Of these 7 were reported as new discoveries. If we compare these
to the CPSSs of order 27 which were enumerated in 2010[5], there are also 25 of
them in the D9 to D15 range, and the numbers in each deficient order match exactly
the numbers given in 1982. So after eliminating the 18 known Type 1 CPSSs in
program range, we can deduce that the 7 remaining new discoveries were 27:599a,
27:636a, 27:861a (rediscovered by Skinner), 27:804a, 27:820a, 27:824a (rediscovered
by Anderson and Pegg 2010) and 27:931a (rediscovered by Morley). There are no
Type 2 CPSS in order 27.

The CPSSs of order 28 were completely enumerated in 2010 and order 29 in 2012[5].
If we compare the Type 1 results in orders 28 and 29 from 2010 and 1012 with the
Type 1 results listed in 1982 (our Table 3), we have difficulty identifying which
CPSSs were discovered as the deficient totals mostly do not match.

The Type 1 program counts from 1982 are not accurate enough to be able to deduce
which particular CPSSs of order 28 and 29 were discovered in 1979. We are unable
to put the deficient squares (within the scope of the 1979 program) into one-to-one
correspondence with the CPSSs that are now known to exist in those orders. If the
1979 bouwkampcode Type 1 printout listings were still available we would be able
to determine which discoveries had been made.

The paper also looked at Type 2 CPSSs and stated [3, p.27] "The results ... showed
that there were no type 2 squares of order 24 or lower. This field had already been
pretty well worked over, and no new squares below order 30 were found." However
an additional Type 2 CPSS, 28:471a has recently been found in order 28 and three
new Type 2 CPSSs were found in 2011 in order 29[5]. Of these, 28:471a, 29:569a
and 29:966a should have been found by the methods in the 1982 paper but were
not.

The aim of the paper was not enumeration of CPSSs across a range of orders, but
rather to establish the lowest order for CPSSs. This objective was achieved.

1990

J. D. Skinner produced 2 new CPSSs of order 29 using a technique of T. H. Willcocks
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Figure 6: Bouwkamp’s 29:968 CPSS pair (elements pairwise the same) and
Skinner’s 29:1429 CPSS pair (elements pairwise different)
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(1951) Technique 2.211 [58, p.305] applied to two compound perfect squares of 28th-
order: the first of reduced side 1015 due to A. H. Stone (1940) and the second of
reduced side 1073 described by W. T. Tutte (1950)[52]. The result was a pair
of 29th-order compound perfect squares of reduced side 1429 with no common
element [44]. Around this time Skinner found 26:480a , 26:493a and 26:648a which
completed the discovery process in order 26 CPSS.

1991

C. J. Bouwkamp published ’On some new simple perfect squared squares’ [13] which
featured new low order SPSSs of order 24 and 25. This paper also featured two
CPSSs of order 29 discovered by Bouwkamp in 1967 but previously unpublished.
These CPSSs have the same side of 968 and the same elements arranged differently.
These two CPSSs are isomers, but unlike most CPSS isomers where the included
rectangle is arranged differently, in this case it is the elements surrounding the
included rectangle that are arranged differently. They are counted as separate
CPSSs.

See Figure 6 on page 13 for images of Skinner’s and Bouwkamp’s CPSS pairs.

1999

Ian Gambini published his doctoral thesis Quant aux carrés carrelés on squared
squares[26]. He used several different methods to enumerate perfect squared rect-
angles and squares.

He implemented his version of what he called the classical method. That is, he
generated non-isomorphic 2-connected planar graphs (with minimum degree 3 to
ensure perfect dissections) and solved the Kirchhoff equations for electrical networks
of the graphs to find the sizes of the squares in the dissection corresponding to edges
with unit resistences. His graph generation method, unlike Duijvestijn’s, did not
use Tutte’s wheel theorem[32]. Gambini was able to generate graphs with up to 25
edges and produce simple and compound perfect squared rectangles (SPSRs and
CPSRs) to order 24. Within these solutions he found the known CPSSs and simple
perfect squared squares (SPSSs) up to and including order 24. He published a table
of SPSR and CPSR counts up to and including order 24.

Gambini observed that a perfect squared square can only have one side with a
minimum of 2 squares along an edge. Hence only one of the polar vertices in the
graph, or its dual, can have a vertex of degree 3. He thereby constrained the graph
generation algorithm and eliminated some graphs from production which could not
produce squared squares. Gambini continued the ’classical method’ beyond order
24 for perfect squared squares and produced all to order 26. Table 2.6 of Gambini’s
thesis listed SPSS and CPSS isomers counts up to and including order 26. In the
SPSS counts Gambini obtained the same results as Duijvestijn. In the CPSS counts
Gambini identified;

• 4 isomers of order 24 CPSS
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• 12 isomers in order 25 CPSSs

• 100 isomers in order 26 CPSSs.

Gambini did not associate the isomers with particular CPSSs , however we can
match them up with known discoveries of that time.

• The 4 isomer counts in order 24 corresponded to T.H. Willcock’s 24:175a
CPSS (4 isomers).

• The 12 isomer counts in order 25 corresponded to P.J. Federico’s 25:235a (4
isomers) and 25:344a (8 isomers).

• The 100 isomer counts of order 26 corresponded to a total of 92 isomers derived
from 15 known order 26 CPSSs ( isomer counts in parentheses ); 288a(4),
360a(4), 360b(4), 384(4), 429a(4), 440a(4), 480a(4), 483a(4), 492a(4), 493a(4),
500a(16), 608a(16), 612a(4), 638a(8), 648a(4) and an additional 8 isomers not
associated with any CPSS(s) known at the time.

The 8 isomer discrepency was not resolved until 2010. The additional CPSS which
completed the order has a side of 512 and has 8 isomers. This CPSS was deduced to
have been discovered by Duijvestijn, Federico & Leeuw in 1979 but not published
and finally identified until 2010 by Anderson and Pegg. This CPSS completes the
catalogue of order 28. Please see Figure 7 on page 16 for an illustration of CPSS
26:512a.

Gambini also developed new methods of producing perfect squared squares using
several tiling algorithms. He improved the efficiency of his algorithms by proof of
theoretical bounds he established on the minimum sizes possible for elements on
both the boundary sides (size of 5) and corners (size of 9) of a perfect squared
square. He was able to produce a large number of SPSS across an unbroken range
of orders from order 21 to order 128. He proved that the 3 SPSS with sides of 110,
originally found by Duijvestijn and Willcocks, are the minimum possible size for a
perfect squared square. He produced only one new CPSS (of order 52, side 976).

Using a variation on his tiling algorithm Gambini was also able to find perfect
squared cylinders and a perfect squared torus (of order 24 with side 181).

2010

Richard K. Guy, Ed Pegg Jr and Stuart Anderson collaborated to extend the known
solutions to the Mrs Perkin’s quilt problem[16, 50, 31, 6]. Mrs Perkin’s quilts in-
clude all combinations of simple, compound, perfect and imperfect squared squares.
Using Brendan McKay and Gunnar Brinkmann’s planar graph generation software
plantri [15, 14] and electrical network tiling software written with C++ standard li-
braries and Boost Ublas library (by Anderson), Anderson and Pegg enumerated all
perfect squared squares and simple imperfect squared squares (SISSs) to order 28
[5]. As a subset of the quilt enumeration Anderson and Pegg produced all CPSSs
up to and including order 28. The CPSS counts by order are;
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Figure 7: Duijvestijn, Federico & Leeuw 26:512a (1979)

• 1 CPSS of order 24, with 4 isomers (Willcocks, 1948)

• 2 CPSSs of order 25, with 12 isomers (Federico, 1962)

• 16 CPSSs of order 26, with 100 isomers, including 1 CPSS, 8 isomers, with
side 512 not previously identified, (discovered in 1979 by Duijvestijn, Federico
and Leeuw and rediscovered by Ian Gambini in 1999) which completed this
order.

• 46 CPSSs of order 27, with 220 isomers, including 4 CPSSs not previously
known (with sides 345a, 624a, 648b, 857a), and 3 CPSSs which had been
discovered by Duijvestijn, Federico and Leeuw in 1979, but never published,
(27:804a, 27:820a and 27:824a) which completed this order.

• 143 CPSSs of order 28, with 948 isomers, including 50 CPSSs not previously
known, which completed this order. Duijvestijn, Federico and Leeuw found
23 new CPSSs in this order but we do not know which ones they found.

2011

S.E. Anderson and Stephen Johnson commenced enumeration of order 29 CPSSs,
and processed all 2-connected minimum degree 3 graphs with up to 15 vertices.
That left the largest graph class, the 16 vertex class, still to be processed.

2012 January-October

In March 2012 G.H. Morley used SPSR substitution into existing CPSSs to discover
more new CPSSs in order 29 and in the order thirties[39]. S.E. Anderson used
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computer substitution of squared squares into squared squares to discover large
numbers (millions!) of CPSS’s in orders 40s and 50s[5].

2012 October-November

S.E. Anderson rewrote his software and over a 9 day period, processed the remaining
16 vertex, 2-connected, minimum degree 3, 30 edge graphs using 34 processor cores
on the Amazon Elastic Cloud supercomputer. Combined with the earlier 13, 14 and
15 vertex, 30 edge 2-connected graphs processed by Pegg, Johnson and Anderson,
and Morley’s recent discoveries in order 29, this completed the enumeration of order
29 CPSSs. The final count for order 29 CPSSs is; 412 CPSSs of order 29, with 2308
isomers, including 253 CPSSs not previously known, which completed this order[5].
Duijvestijn, Federico and Leeuw found 101 new CPSSs in order 29, but we do not
know which ones they found.

2013 January

James B. Williams [59] wrote a square tiling program to search for perfect squared
squares in the order twenties and thirties. He found no new CPSS in the order
twenties but his discoveries in the order thirties were mostly new;

• 1064 order 30 CPSS isomers

• 2959 order 31 CPSS isomers

• 7605 order 32 CPSS isomers

• 19612 order 33 CPSS isomers

3 Theory and Computer methods

3.1 Dissection, tiling and the trivial dissection

The dissection of a rectangle into squares can be viewed as a tiling by squares of a
rectangle. A square packing of a rectangle is a set of squares embedded in the rectangle
with no overlaps. A square covering of a rectangle is a set of squares embedded in the
rectangle with no gaps. A square tiling is both a square covering and a square packing,
à la Grunbaum and Shephard [27, p16.].

In the case where a rectangle is a square, it can be tiled with a single square. This
differs from the dissection of a square into squares. In the dissection of a square into
squares such a thing is called the ’trivial’ dissection. It has been the convention in the
history of squared squares that the trivial dissection is not included as a solution to the
problem of squaring the square. There are probably several reasons for this;

• excluding the trivial dissection as a solution, changes the problem from one with a
trivial solution to one that is difficult and challenging.

• including the trivial dissection as a solution, would provide a trivial squared tiling
solution to every integer sized square. These infinite trivial solutions would be
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essentially the same as the trivial solution of the unit square and provide us with
no new information.

• dissection evokes the physical operation of marking or cutting into a surface with
horizontal and vertical lines. The trivial dissection requires no such cuts or marks
and in that sense is not a dissection at all.

• allowing the trivial dissection would require it to be included as an extra solution for
each non-trivial solution found. We could say Willcocks’s order 24 perfect squared
square is really an order 25 dissection, and similarly for all other perfect squared
squares. This is superfluous.

3.2 Graph theory terms

We introduce some informal graph theory terminology we will be using in the next section
of the paper.

Graphs are mathematical objects. They consist of vertices (or nodes) and edges

(which connect the vertices).
An undirected graph is one in which edges have no orientation. In an undirected

graph the pair of vertices in a edge is unordered, (v0, v1) = (v1, v0) and a directed graph

is one in which each edge is a directed pair of vertices, (v0, v1) 6= (v1, v0).
If (v0, v1) is an edge in an undirected graph, v0 and v1 are adjacent. The edge (v0,

v1) is incident on vertices v0 and v1.
If (v0, v1) is an edge in a directed graph, v0 is adjacent to v1, and v1 is adjacent

from v0. The edge (v0, v1) is incident on v0 and v1.
The degree of a vertex is the number of edges incident on that vertex. In directed

graphs, the in-degree of a vertex v is the number of edges that have v as the head and
the out-degree of a vertex v is the number of edges that have v as the tail.

A weighted graph is a graph with numbers (weights) associated with each edge.
A simple graph is an undirected graph containing no loops or multiple edges. An

edge which connects a vertex to itself is a loop.
A path is a sequence of vertices v1, v2, . . . , vk such that consecutive vertices vi, and

vi+1 are adjacent. A simple path is one with no repeated vertices and a cycle is a simple
path except the last vertex is the same as the first vertex.

A connected graph is a graph where any two vertices are connected by some path.
A graph is called k-connected if one must remove at least k vertices (and the edges

adjacent to those vertices) in order to separate the graph into disconnected parts. If
there is some set of k vertices that, when removed, achieves the separation, we say the
graph is exactly k-connected.

A planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on
the plane in such a way that its edges intersect only at their endpoints. In other words,
it can be drawn in such a way that no edges cross each other. Every planar graph can
be drawn on the sphere and vice versa.

A planar map is the combinatorial embedding of a planar graph, i.e., the map M
is bidirected (for every edge v0 and v1 of M the reverse edge v1 and v0 is also in M) and
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there is a planar embedding of M such that for every node v the ordering of the edges
in the adjacency list of v corresponds to the counter-clockwise ordering of these edges
around v in the embedding.

Isomorphic graphs are graphs which contain the same number of graph vertices
connected in the same way.

A subgraph is a subset of vertices and edges forming a graph. A connected com-

ponent is a maximal connected subgraph.
A tree is a connected graph with no cycle.
A spanning tree of a graph G is a subgraph of G which is a tree that includes all

the vertices of G.

3.3 The p-nets and c-nets of a squared rectangle

We associate a network graph with a squared rectangle such that each horizontal line
segment of the squared rectangle corresponds to a graph node and each square corre-
sponds to a graph edge (or branch in electrical terminology) connecting the two nodes of
the top and bottom horizontal lines of the square. We put an arrow on each branch to
indicate the positive direction for currents running through the graph. The nodes P (+)
and P (−) are the poles of the network.

There is another p-net (and c-net) we can associate with the squared rectangle, this is
the dual graph and corresponds to the same construction applied instead to the vertical
line segments of the squared rectangle.

In each of the branches of either the network graph, or it’s dual graph, a unit resistance
is placed. Electricity acts according to the equation V = IR where V is the voltage drop
and I the current and R the resistance. If we assume the resistance is 1, then the current
is the voltage drop. Thus if we think of an branch i → j as a wire having resistance 1
with voltage vi at i and voltage vj at j, then the current from i to j is the voltage drop
vi − vj .

The current in each branch is given in terms of a current variable C called the
Complexity, entering at P (+), and leaving at P (−). Kirchhoff’s current law then gives n
equations for the branches incident on n nodes in n unknown potentials, but one equation
is redundant and can be eliminated and we can also set the potential at P (−) to 0 and
hence remove this node voltage variable. This gives n − 1 independent linear equations
and n− 1 unknowns so a unique solution to the equations is always possible.

The value of C is then reduced so as to make the currents all integers without any
common factor. These are the ’reduced’ currents, the numbers attached to the branches
which are also the side lengths of the component squares.

The network graph superimposed on the squared rectangle called a p-net (polar net).
If the two nodes P (+) and P (−) are connected by a new branch the net is completed
and is called a c-net (completed net). The c-nets are planar 3-connected planar graphs,
this means one must remove at least 3 nodes (and the branches adjacent to those nodes)
in order to separate the c-net into disconnected parts. By a result of Steinitz planar
3-connected planar graphs are isomorphic to edge skeleta of polyhedra.
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Figure 8: 33 x 32 simple perfect squared rectangle and p-net
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It was proved in the 1940 Brooks, Smith, Tutte, Stone paper that every simple squared
rectangle can be derived from a c-net. If the c-net has m edges, m p-nets are produced
by removing each edge in turn, and hence at least m squared rectangles of order m− 1
are obtained. The process is equivalent to placing a battery in turn in each edge of the
c-net and calculating the relative values of the currents in the other edges.

Not every squared rectangle produced in this manner will be necessarily perfect, but
every simple perfect rectangle of order m− 1 is produced from the complete set of c-nets
of order m.

3.4 Electrical network definitions

We also introduce some electrical engineering terminology and a matrix definition to be
able to calculate electrical voltages and currents in a given networks, and thereby show
how squared rectangle dissections can be produced;

An electrical network is an interconnection of electrical elements.
An electrical circuit is a network consisting of a closed loop, giving a return path

for the current.
A resistive circuit is a circuit containing only resistors and ideal current and voltage

sources. For a network composed of linear components, such as a resistive circuit there
will always be one, and only one, unique solution for a given set of boundary conditions.

Network analysis is the process of finding the voltages across, and the currents
through, every component in the network.

Kirchhoff’s Current Law (KCL) For any electrical circuit, for any of its nodes,
the algebraic sum of all branch currents leaving the node is zero.

Kirchhoff’s Voltage Law (KVL) For any electrical circuit, for any of its loops, the
algebraic sum of all branch voltages around the loop is zero.

Incidence Matrix

The (branch-node) incidence matrix of a graph is defined as follows;

Aik =







1 if branch k is directed away from node i
−1 if branch k is directed towards node i
0 if branch k is not incident on node i

The direction of a branch is the reference direction, this can be an arbitrary choice,
but applied consistently to the network. For example, each node of the network graph is
indexed with an integer, if the direction of an edge is from a lower node index to higher
node index, we can say it is directed away from the lower node and give a value of 1 in
the branch-node incidence matrix. Alternatively if the edge is going from a higher node
index to a lower node index we can say it is directed towards the lower node and give a
value of -1 in the branch-node incidence matrix.
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3.5 An example of the calculation of squared rectangles from a planar

graph

Applying the definition of incidence matrix to the network graph of Figure 8 on page 20
we obtain the branch-node incidence matrix Aa ;

Aa =

















1 1 0 0 0 0 0 0 0 −1
0 −1 1 1 0 0 0 0 0 0

−1 0 0 0 1 0 1 0 0 0
0 0 −1 0 −1 1 0 1 0 0
0 0 0 −1 0 −1 0 0 1 0
0 0 0 0 0 0 −1 −1 −1 1

















We form a vector j where jk is the current in branch bk. The equation Aj = 0 gives
Kirchhoff’s Current Law (KCL).

Aaj =

















1 1 0 0 0 0 0 0 0 −1
0 −1 1 1 0 0 0 0 0 0

−1 0 0 0 1 0 1 0 0 0
0 0 −1 0 −1 1 0 1 0 0
0 0 0 −1 0 −1 0 0 1 0
0 0 0 0 0 0 −1 −1 −1 1

















































j1
j2
j3
j4
j5
j6
j7
j8
j9
j10

































=

















0
0
0
0
0
0

















From inspection of the network graph of Figure 8 on page 20 it is clear the rows of Aaj
give the branch current equations of KCL at each node.

=

















j1 j2 0 0 0 0 0 0 0 −j10
0 −j2 j3 j4 0 0 0 0 0 0

−j1 0 0 0 j5 0 j7 0 0 0
0 0 −j3 0 −j5 j6 0 j8 0 0
0 0 0 −j4 0 −j6 0 0 j9 0
0 0 0 0 0 0 −j7 −j8 −j9 j10

















=

















0
0
0
0
0
0

















If we add at the KCL equations (written in terms of the branch currents j1, j2, ..., j10),
all the 6 KCL equations cancel out. Since every branch must leave one node and terminate
on another node, all branch currents will cancel out in the sum of the 6 equations. We
conclude that the 6 equations obtained by writing KCL for each of the nodes of the

network graph are linearly dependent.

Now we pick a node, the polar node P (−), called the datum node, and form another
incidence matrix , including all nodes except P (−), we call this the reduced incidence
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matrix A.

A =













1 1 0 0 0 0 0 0 0 −1
0 −1 1 1 0 0 0 0 0 0

−1 0 0 0 1 0 1 0 0 0
0 0 −1 0 −1 1 0 1 0 0
0 0 0 −1 0 −1 0 0 1 0













Clearly A is the same matrix as Aa except one row (the last) has been removed. With
A we can apply Aj = 0 (KCL) and form 5 equations. By removing one of the equations
it can always be shown that the remaining equations are linearly independent.

Aj =













j1 j2 0 0 0 0 0 0 0 −j10
0 −j2 j3 j4 0 0 0 0 0 0

−j1 0 0 0 j5 0 j7 0 0 0
0 0 −j3 0 −j5 j6 0 j8 0 0
0 0 0 −j4 0 −j6 0 0 j9 0













=













0
0
0
0
0













To obtain equations for potential differences in the graph we use the transpose of A.
The transpose of A is obtained by replacing all elements Aik with Aki. In other words,
the matrix transpose, most commonly written AT , is the matrix obtained by exchanging
A’s rows and columns.

Kirchhoff’s Voltage Law (KVL) states that for a network, for any loop, the sum of the
potentials (voltage drops) around the loop is zero. (A loop is a subgraph of the network
which is connected and has exactly 2 branches of the subgraph incident with each node).

We form an equation for KVL, v = AT e where the components ei of the vector e
describe the electrical potential at the nodes i of the graph, and v is a vector describing
the difference in potential across each branch k of the graph. We apply KVL to the
network graph of Figure 8 on page 20 to obtain the branch voltages from the node
voltages.

v = AT e =

































v1
v2
v3
v4
v5
v6
v7
v8
v9
v10

































=

































1 0 −1 0 0
1 −1 0 0 0
0 1 0 −1 0
0 1 0 0 −1
0 0 1 −1 0
0 0 0 1 −1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

−1 0 0 0 0













































e1
e2
e3
e4
e5













Inspection of the network graph of Figure 8 on page 20 demonstrates vk corresponds to
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the voltage drop in each branch bk.

v =

































v1
v2
v3
v4
v5
v6
v7
v8
v9
v10

































=

































e1 0 −e3 0 0
e1 −e2 0 0 0
0 e2 0 −e4 0
0 e2 0 0 −e5
0 0 e3 −e4 0
0 0 0 e4 −e5
0 0 e3 0 0
0 0 0 e4 0
0 0 0 0 e5

−e1 0 0 0 0

































So far we have formed a reduced incidence matrix from the network graph and have
derived the Kirchhoff equations of KCL and KVL. We can combine these matrix equations
by starting with Ohm’s Law and using substitution;

v = jr by Ohm’s Law, (1)

j = (1/r)v rearranging (2)

j = Gv conductance matrix G = 1/r, (3)

Aj = AGv premultiply by A, (4)

Aj = AG(AT e) (KVL) v = AT e , (5)

AG(AT e) = 0 (KCL) Aj = 0 , swap lhs, rhs (6)

AI(AT e) = 0 G = I, all conductances are 1 (7)

(AAT )e = 0 AI = A, G is the identity matrix I, (8)

Ke = 0 define AAT = K; the Kirchhoff matrix (9)

We continue with the example from the network graph of Figure 8 on page 20 to obtain
it’s Kirchhoff matrix.

K = AAT =













1 1 0 0 0 0 0 0 0 −1
0 −1 1 1 0 0 0 0 0 0

−1 0 0 0 1 0 1 0 0 0
0 0 −1 0 −1 1 0 1 0 0
0 0 0 −1 0 −1 0 0 1 0













































1 0 −1 0 0
1 −1 0 0 0
0 1 0 −1 0
0 1 0 0 −1
0 0 1 −1 0
0 0 0 1 −1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

−1 0 0 0 0

































The Kirchhoff matrix of Figure 8. The last row of the matrix, giving equations for
branches connected to P(-) has been eliminated. This node, the negative pole is also
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called the ground, or reference or datum node.

K = AAT =













3 −1 −1 0 0
−1 3 0 −1 −1
−1 0 3 −1 0
0 −1 −1 4 −1
0 −1 0 −1 3













We can invert the square matrix K to solve for e, then substitute e into KVL to obtain
v, which also gives j, (j = v as all conductances are 1). We interpret the values of e as
the horizontal dissection lines in the squared rectangle and the branch currents j as the
dissected square sizes.

However we have not specified any source currents or voltages so all values are relative
not absolute. We can remedy this by calculating a number based on the network graph,
we call this number the Complexity, it is the determinant of the Kirchhoff matrix, and
gives the number of spanning trees of the graph; τ(G). This becomes the total current
entering at the positive pole and leaving at the negative pole. We multiply the inverted
Kirchhoff matrix K by the Complexity, τ(G), to get another matrix V from which we
obtain integer values for node voltages e and from these the branch currents. These are
known as the ’full’ voltage and currents, these can often be reduced by a common factor.

det(K) = τ(G) the number of spanning trees of G (10)

det(K)K−1e = V V gives the ’full’ node voltages (11)

In the example of Figure 8 the determinant of K is 130, which is also the number of
spanning trees of the graph. We then calculate V for Figure 8.

det(K)K−1 = V =













64 34 28 20 18
34 79 23 35 38
28 23 61 25 16
20 35 25 55 30
18 38 16 30 66













Each indexed row and column have the same entries, which are sets of node voltage
solutions satisfying the Kirchhoff equations. To enumerate squared rectangles we need
to find all branch currents solutions of the network graph. To do this we form a triple
matrix product, sandwiching V = det(K)K−1 between AT and A to obtain a ’full’
currents matrix F with solutions where each branch, in turn, acts as the polar edge ;

F = ATV A triple matrix product gives ’full’ currents matrix F (12)

(13)
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F =





























69 25 16 9 −28 −7 −33 −5 2
25 75 −30 −25 20 5 5 −15 −20
16 −30 64 36 18 −28 −2 −20 8
9 −25 36 69 2 33 7 5 −28

−28 20 18 2 66 −16 36 −30 −14
−7 5 −28 33 −16 61 9 25 −36
−33 5 −2 7 36 9 61 25 16
−5 −15 −20 5 −30 25 25 55 30
2 −20 8 −28 −14 −36 16 30 66





























We need to obtain the ’reduced’ currents from the ’full’ currents. To do this we form a
vector R, the reduction vector, composed of the GCD (greatest common divisor) of each
row of the full currents matrix F , then divide F by R to obtain the reduced currents
matrix B.

~Ri =
m

gcd
j=1

Fij GCD to rows of F obtains the reduction vector R (14)

F/R = B dividing F by R gives the reduced currents matrix B (15)

F/R =





























69 25 16 9 −28 −7 −33 −5 2
25 75 −30 −25 20 5 5 −15 −20
16 −30 64 36 18 −28 −2 −20 8
9 −25 36 69 2 33 7 5 −28

−28 20 18 2 66 −16 36 −30 −14
−7 5 −28 33 −16 61 9 25 −36

−33 5 −2 7 36 9 61 25 16
−5 −15 −20 5 −30 25 25 55 30
2 −20 8 −28 −14 −36 16 30 66





























/





























1
5
2
1
2
1
1
5
2





























= B =





























69 25 16 9 −28 −7 −33 −5 2
5 15 −6 −5 4 1 1 −3 −4
8 −15 32 18 9 −14 −1 −10 4
9 −25 36 69 2 33 7 5 −28

−14 10 9 1 33 −8 18 −15 −7
−7 5 −28 33 −16 61 9 25 −36
−33 5 −2 7 36 9 61 25 16
−1 −3 −4 1 −6 5 5 11 6
1 −10 4 −14 −7 −18 8 15 33





























Each row of B corresponds to a set of square sizes in a squared rectangle. B is indexed by
the edges of the network graph. B is a square matrix and the diagonal entries correspond
to the (reduced) current in the polar edges, that is, the width of each squared rectangle
solution. In the theory of squared rectangles, the semiperimeter of the rectangle is equal
to det(K). The height can then be calculated as the diagonal entry Bii (width) subtracted
from det(K)/Ri. Width may be less than height at this stage, a standard orientation is
imposed later.
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A number of the entries in B are negative. The negative values correspond to current
directions along edges which are a reversal of the original reference directions. To change
the negative values to positive currents we reverse the reference directions of those edges
in the network graph.

Among the squared rectangle solutions for the Figure 8 graph found in B are 3 unique
squared rectangles of order 9. There are 2 simple perfect squared rectangles (33x32 and
69x61) (see Figure 3 on page 4) and 1 simple imperfect squared rectangle (15x11).

3.6 Squared squares

In the case where the height is equal to the width, the squared rectangle is a squared
square, and if no two squares are the same size, it is a perfect squared square. In the
matrix B, if any diagonal entry Bii = det(K)/2Ri then a squared square of reduced size
Bii has been found.

3.7 Bouwkampcode; encoding the dissections

Since Bouwkamp, squared rectangles have often been represented using a code (called
bouwkampcode). "First we suppose the rectangle to be drawn out in such a manner that
its largest sides are horizontal. Then the element in the upper left corner should not be
smaller than the three remaining corner elements. .... Henceforth we will always "orient"
a squared rectangle in the above sense ... . Now the given oriented rectangle is squared
by horizontal and vertical line segments. Consider the group of elements with their upper
horizontal sides in a common horizontal segment. The individual elements of this group
are conveniently ordered by a reading from left to right. The various groups themselves
are ordered according to upwards downwards reading, starting with the upper horizontal
side of the given rectangle. If necessary line segments at the same horizontal level are
ordered from left to right too. In the written code the various groups are separated by
parentheses, the elements of a group by commas."[9, p. 1179].

In the case where a perfect squared rectangle is square, i.e. a perfect squared square,
it is necessary to introduce a further rule, that is, in addition to having the largest corner
square in the top left corner, the larger of the two boundary squares adjacent to the
corner square, go to the right of it. These two elements are the first and the second listed
elements in the bouwkampcode. In the case of simple perfect squared squares (SPSSs)
the code as just described is chosen as the canonical representative of the eight possible
orientations of the squared square[?, p (i)].

In the case of CPSSs, which is the concern of this paper, there is the issue of the
added complication of the canonical orientation of the smaller squared subrectangle(s)
to consider. Each isomer will have a different bouwkampcode, we need to select one as
the canonical representative, and as the existing bouwkampcode rules only operate on
the first two elements, they will not distinguish CPSS isomers.

A second issue that needs to be resolved with bouwkampcode is the duplication
that can result when bouwkampcode is produced for squared rectangles which have a
cross. If a squared rectangle is crossed, there are two possible ways of producing the
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bouwkampcode. If a cross exists in a squared rectangle then there are two horizontal
segments which are at the same horizontal level and meet at a point. The bouwkampcode
can treat them as either two horizontal segments, or they can be combined into one. The
two different bouwkampcodes for the same crossed squared rectangle can result from
two different graphs, If different crossed bouwkampcodes describing the same rectangle
dissection are not identified and the duplicate bouwkampcode not removed, the squared
rectangle enumeration count will be inflated. This issue was highlighted by Gambini.[26,
pp.22-24 ].

Bouwkamp invented bouwkampcode[9] after Brooks, Smith, Tutte and Stone (BSST)
wrote their 1940 paper[42]. BSST noted the many-to-one correspondence between p-nets
and squared rectangles where there is a zero current, or when two vertices belonging
to the same face have equal potential, which in both cases results in a cross in the
squared rectangle. They introduced the "normal form" of a p-net which then made the
correspondence one-to-one by removing any zero current edges and identifying the nodes
of equal potential [42, p.320]. The normal form of a p-net can be encoded unambiguously
by using a variation of bouwkampcode discussed in the next section.

3.8 Tablecode and the CPSS canonical representative

A further modification to bouwkampcode can be made. If we form bouwkampcode ac-
cording to the stated rules, then strip away the parentheses and replace the commas
with white space we have a new form of bouwkampcode, due to J.D. Skinner, called
tablecode[29]. From tablecode the squared rectangle can always be reconstructed in the
same manner as is done with bouwkampcode. Crossed squared rectangles are no longer
a source of potential duplication. Removing the parentheses allows only one tablecode
to be produced for each dissection, cross or no cross.

With tablecode we also augment the element list by inserting three additional fields
into the code at the beginning of the string, that is the order, the width and the height, all
separated by spaces. We can also extend the definition of bouwkampcode (or tablecode)
by including even more fields. The most useful is an ID field. When more than one CPSS
has the same size, it is easier to identify a particular dissection by it’s ID rather than
having to construct the dissection from the code. IDs are made by concatenating the
CPSS size with a letter of the alphabet. We use lowercase alphabet letters for CPSSs
and uppercase for SPSSs. For two CPSSs of the same size, the one with the numerically
lower tablecode is given the lower alphabet letter. Other extended bouwkampcode (or
tablecode) fields are the discoverer’s initials, the year of discovery and the number of
isomers of that CPSS.

The issue of the canonical orientation of the smaller squared subrectangle in a CPSS
can also be solved by using tablecode. The method used by the author is to encode
all the isomers of a CPSS by orienting the subrectangle(s) of the CPSS in all possible
ways, and orienting each CPSS isomer in all 8 orientations of the square, then producing
a tablecode for each of those orientations. Next, for each tablecode, pad each of it’s
elements with leading zeros so that the number of digits of each element matches the
number of digits of the CPSS width field. The zero padded element sizes of each isomer
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are then concatenated together to form a collection of tablecode isomer strings. The
string belonging to the collection which is lexicographically the highest is used to select
the corresponding non-zero padded tablecode as the canonical representative of the CPSS
and its isomers. The zero padding of element values ensures the lexicographically highest
string is also numerically highest. This method is consistent with the earlier bouwkam-
pcode rules[?, p (i)] and eliminates any duplicate tilings. Please see Figure 1 on page 2
for examples of a CPSS bouwkampcode and tablecode in canonical form. By selecting
the lexicographically and numerically highest tablecode string from the 8 orientations of
each CPSS isomer we can also put the isomers into a canonical form.

3.9 Generating graphs with plantri

The graphs used to produce squared squares are generated by a program called plantri.
Plantri is a program that generates certain types of graphs that are embedded in the
sphere, so that exactly one member of each isomorphism class is output. Isomorphisms
are defined with respect to the embeddings. The program is exceptionally fast and is
suitable for the production of large numbers of graphs.[15]

The mathematics and implementation of plantri are a collaboration between Gunnar
Brinkmann and Brendan D. McKay. McKay distributes the plantri generator on his
website [15]. Brinkmann has collaborated with O. Delgado Friedrichs, S. Lisken, A.
Peeters and N. Van Cleemput to make available a version of plantri called CaGe (the
Chemical and abstract Graph environment), which is a mathematical software package
that is intended to be a service to chemists as well as mathematicians, it is designed for
2D and 3D interactive viewing of the graphs it produces [24].

The planar graphs used to produce square tilings are generated in 2 main steps;
firstly, it follows from the work of Steinitz [46] that every triangulated sphere can be
reduced to the boundary of the tetrahedron by a sequence of edge contractions. In other
words, the boundary of the tetrahedron is the only irreducible triangulation of the sphere
from which every n-vertex triangulation can be obtained by a suitable sequence of vertex
splits. The program plantri implements this procedure and allows for a fast enumeration
of triangulations of the sphere.[35]

Secondly, general simple plane graphs are produced from the triangulations by the
removal of one edge at a time. This is done within specified lower bounds on the minimum
degree, the vertex connectivity, the number of edges and if required, an upper bound on
the maximum face size[37].

Efficient generation of graphs requires that duplicate graphs (isomorphs) not be pro-
duced. The method used for isomorph rejection is the “canonical construction path”
method introduced by McKay [37]. Details are in [14]. This method is implemented in
plantri. Essentially, the program chooses one of the sequences of expansions by which
each graph can be made, then rejects any graph made by other sequences. An expansion
means replacing some small subgraph by another, usually larger, subgraph under spec-
ified conditions. Those graphs not rejected then comprise exactly one member of each
isomorphism class.
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3.10 2-connected planar graphs and compound dissections

In the theory of squared rectangles developed by Brooks, Smith, Stone and Tutte[42],
the dissections of squared rectangles correspond to electrical flows on 2-connected and
3-connected planar graphs embedded in the sphere with one edge distinguished. The
3-connected graphs correspond in most cases to simple dissections, and only have one
embedding in the sphere, while 2-connected graphs have multiple embeddings in the
sphere, each of which corresponds to a different compound isomer dissection.

A 2-connected planar graph produces compound dissections. More recent proofs of
this and other related results are given by Blander and Lo [8]. If a graph has vertices
of degree 2 then it will always produce imperfect tilings. By Kirchhoffs current law, the
current into the vertex will equal the current coming out. Currents correspond to the
sizes of squares in network with unit resistances so the 2 corresponding squares will be of
the same size, and hence the dissection is imperfect. It follows that the enumeration of
compound perfect squared squares (CPSSs) using electrical network theory will require
the production of 2-connected planar embeddings with no vertex of degree 2.

Graphs with no vertices of degree 2 are known as homeomorphically irreducible graphs.
Unlabelled homeomorphically irreducible 2-connected graphs were counted by T.R.S.
Walsh in 1982 using an enumeration tool developed by R.W. Robinson [55]. In 2007
Gagarin, A. and Labelle, G. and Leroux, P. and Walsh, T published [25, p27] and gave
counts of unlabelled planar 2-connected graphs. They also gave a formula for 2-connected
homeomorphically irreducible planar graphs[25, p32].
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Table 4: Homeomorphically irreducible 2-connected embedded planar graphs produced by plantri to enumerate CPSSs to order 29

Node Count V in rows and Face Count F in columns, Edge Count E = V + F - 2 , in diagonals.
6 7 8 9 10 11 12 13 14 15 16 17 18 19

6 1 1
7 - 3 7 2
8 - - 35 60 47 12
9 - - 307 647 652 325 59

10 - - - 3 395 7 647 9 582 6 654 2 442 368
11 - - - 38 876 94 278 136 628 121 204 64 232 18 916 2 363
12 - - - - 468 211 1 192 511 1 937 266 2 049 784 1 409 199 607 746 150 161 16 253
13 - - - - 5 787 837 15 371 597 27 294 367 33 135 263 27 605 162 15 550 020 5 669 267
14 - - - - - 73 232 219 201 223 550 384 201 336 520 501 148 504 051 385
15 - - - - - 944 081 828 2 670 262 417 5 415 258 877
16 - - - - - - do this!

Dual graphs where V > F do not need to be produced as they produce the same CPSSs as the graph classes where V < F
except for a rotation of the CPSS by 90 degrees. These cells have a dash (-). Each order n of CPSS is enumerated by processing all
graph classes in the table with the same edge count E where E - 1 = order n. Table cells where 2F > 3V correspond to non-planar
graphs are so are not produced by plantri, similarly for the duals of those graphs where 3F < 2V. Graph classes where 2F = 3V are
triangulations. These graphs are 3-connected so they and their duals the cubic graphs, (3F = 2V) are also not produced for this class
of 2-connected graphs.
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3.11 Counts of CPSSs to order 29

Table 5: Number of Compound Perfect Squared Squares (CPSSs) to Order 29 (2012)

Order CPSSs CPSS Isomers

24 1 4
25 2 12
26 16 100
27 46 220
28 143 948
29 412 2308

CPSSs can be counted in two ways. Firstly we count the number of compound perfect

squared squares of order n up to symmetries of the square and its squared subrectangles

OEIS A181340 [4], this includes only one representative from both the CPSS class and
the CPSS isomer class. This is how CPSSs have been counted to date in the literature.

We introduce a second count, that is the number of compound perfect squared squares

up to symmetries of the square; OEIS A217155 [38], this count is the number of members
of the CPSS isomer class and includes all the symmetries of any dissected subrectangles,
(but not the 8 symmetries of the dissected square).

All the other isomers of a given CPSS isomer can easily be found by examining all
the different ways in which sub-rectangle(s) can be oriented within the squared square
dissection. The isomers derived geometrically are a useful check on the enumeration of
CPSS produced from graphs. The isomer count for a particular CPSS corresponds to all
the possible embeddings of the underlying 2-connected graph.
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3.12 Bouwkampcode listing of CPSSs, order 24 to order 27

order sizeID bouwkampcode isomers author year(s)
24 175a (81,56,38)(18,20)(55,16,3)(1,5,14)(4)(9)(39)(51,30)(29,31,64)(43,8)(35,2)(33) (4) THW 1948
25 235a (124,111)(43,35,33)(56,38,30)(2,31)(8,29)(81)(18,20)(60)(55,16,3)(1,5,14)(4)(9)(39) (4) PJF 1964
25 344a (147,108,89)(27,62)(100,8)(35)(86,61)(97)(25,136)(111)(56,41)(17,24)(40,14,2)(12,7)(31)(26) (8) PJF 1978
26 288a (136,72,80)(64,8)(88)(67,60,41,32)(120)(16,25)(3,13)(36,27)(4,21)(38,29)(17)(65)(9,56)(47) (4) CJB 1971?
26 360a (207,153)(63,90)(53,36,55,54,9)(45,27)(17,19)(117)(42,26,2)(99)(24,52)(16,34)(58)(6,46)(40) (4) E_L 1969?
26 360b (207,153)(63,90)(68,40,36,54,9)(45,27)(4,7,25)(117)(28,13,3)(10)(15,8)(99)(33)(85,26)(59) (4) CJB 1971?
26 384a (205,179)(80,99)(88,63,54)(9,125)(25,47)(48,28,23)(91,22)(5,18)(20,13)(69)(7,24)(58,17)(41) (8) PJF 1962
26 429a (264,165)(63,102)(24,39)(9,15)(3,6)(95,100,72)(162)(28,44)(70,25)(20,65,27,16)(11,49)(45)(38) (4) PJF 1964
26 440a (250,190)(80,110)(81,45,54,70)(50,30)(36,9)(140)(27,19,17)(120)(2,15)(8,13)(109,38,5)(33)(71) (4) CJB 1971?
26 480a (280,200)(80,120)(116,103,101,40)(160)(2,99)(45,60)(84,32)(52,25)(7,16,37)(3,4)(27,1)(5)(21) (4) JDS 1990?
26 483a (247,236)(100,136)(41,24,31,62,89)(17,7)(12,26)(56,2)(14)(40)(35,27)(8,147,61)(139)(25,111)(86) (4) DFL 1979
26 492a (255,125,55,57)(53,2)(59)(17,25,11)(3,56)(14)(142)(39)(95)(111,96,36,12)(24,225)(60)(15,141)(126) (4) THW 1951
26 493a (218,135,65,75)(55,10)(85)(15,40)(150)(125)(131,87)(67,208)(17,23,47)(11,6)(5,24)(16)(144,3)(141) (4) JDS 1990?
26 500a (195,193,112)(43,29,40)(19,10)(9,1)(41)(38,5)(33)(72,98,135)(125,70)(55,87)(61,37)(180)(172)(148) (16) PJF 1964?
26 512a (202,128,182)(74,54)(87,149)(130,45,34,67)(11,23)(44,12)(35)(92,62)(41,3)(38)(30,181)(180,29)(151) (8) DFL 1979
26 608a (231,194,183)(11,172)(205)(118,113)(5,108)(123)(44,43,85)(1,42)(209,41)(168)(20,27,61)(136,7)(34)(95) (16) WTT 1940
26 612a (289,154,105,64)(28,36)(13,15)(7,29)(49,69)(22)(51)(203)(63,6)(57)(120)(153,136)(68,255)(17,187)(170) (4) CJB 1971?
26 638a (229,232,177)(55,122)(226,3)(223,67)(189)(183,102,92,72)(39,150)(111)(31,23,38)(81,21)(8,15)(60)(53) (8) PJF 1964?
26 648a (378,270)(108,162)(153,128,151,54)(216)(73,55)(32,119)(117,36)(87)(24,12)(16,69)(17,7)(3,13)(10)(40) (4) JDS 1990?
27 256a (118,76,62)(14,48)(56,34)(22,60)(64,54)(40,38)(51,47)(10,84)(74)(8,39)(35,11,5)(1,7)(6)(24) (4) JDS 1990?
27 324a (189,135)(54,81)(76,60,39,41,27)(108)(37,2)(43)(16,44)(59,33)(29,8)(51)(12,31,1)(30)(26,7)(19) (4) JDS 1990?
27 325a (196,129)(67,62)(5,57)(69,37,39,71,52)(35,2)(41)(32,77)(60,9)(58,13)(6,21,8)(15)(49)(45)(36) (4) PJF 1962
27 345a (133,104,108)(100,4)(57,30,25)(62,71)(8,17)(27,3)(11)(2,15)(13)(39,73)(53,9)(44,141,34)(107)(97) (8) A& P 2010
27 357a (197,160)(37,27,44,52)(10,17)(90,75,72,7)(49,19)(11,41)(30)(16,104)(88)(35,40)(70,20)(50,5)(45) (4) JDS 1990?
27 360a (208,152)(56,96)(67,44,49,64,40)(24,112)(28,16)(11,38)(27)(88)(37,25,5)(33)(65)(12,13)(48,1)(47) (4) CJB 1970?
27 408a (264,144)(63,81)(30,33)(15,66)(27,3)(51)(82,80,74,55)(117)(19,36)(6,70,17)(22,64)(62,20)(53)(42) (4) PJF 1962
27 440a (253,187)(77,110)(81,44,51,66,11)(55,33)(37,7)(143)(30,28)(121)(8,20)(106,36,6)(14)(2,18)(16)(70) (4) CJB 1970?
27 441a (249,192)(76,116)(108,90,51)(36,40)(31,16,4)(13,27)(23,133)(15,1)(14)(110)(42,48)(84,24)(60,6)(54) (4) JDS 1990?
27 441b (249,192)(92,100)(108,90,51)(16,76)(39,61)(67)(17,22)(42,48)(12,5)(88)(84,24)(7,81)(74)(60,6)(54) (4) JDS 1990?
27 447a (255,192)(63,55,74)(36,19)(108,90,92,28)(93)(64)(42,48)(100,39,17)(5,88)(84,24)(22)(61)(60,6)(54) (4) JDS 1990?
27 460a (197,127,136)(118,9)(76,69)(115,82)(15,17,37)(68,8)(21,2)(19)(39,1)(38)(83,35)(33,49)(180)(148)(132) (4) E_L 1969?
27 468a (273,195)(78,117)(99,71,66,76,39)(156)(45,21)(31,40)(11,19,46)(24,8)(27)(96,3)(34)(25,84)(73)(59) (4) JDS 1990?
27 468b (273,195)(78,117)(99,81,56,76,39)(156)(25,31)(11,19,46)(21,45,40)(34,8)(27)(96,3)(24)(74)(73)(69) (4) JDS 1990?
27 596a (305,291)(124,86,81)(195,110)(5,76)(91)(181,53)(20,56)(128,36)(96,54,45)(92)(21,24)(42,12)(30,3)(27) (16) JDS 1990?
27 599a (341,258)(38,26,23,43,128)(3,20)(12,17)(45,5)(85)(144,104,138)(213)(70,34)(52,120)(114,30)(84,16)(68) (4) DFL 1979
27 600a (333,267)(66,201)(94,64,82,159)(46,18)(100)(78,16)(62)(69,132)(108,51)(95,35,10)(25,85)(6,63)(60)(57) (4) PJF 1962
27 616a (350,266)(112,154)(87,64,101,98)(70,42)(27,37)(196)(66,21)(17,10)(168)(7,52,89)(45)(113,50)(13,76)(63) (4) CJB 1970?
27 618a (327,291)(105,186)(137,121,69)(99,75)(16,11,28,66)(4,7)(1,3)(154)(10)(24,51)(38)(45,141)(123)(104)(96) (4) PJF 1962
27 624a (335,289)(108,181)(105,60,44,64,62)(16,28)(45,19,12)(2,68,100)(66)(7,33)(26)(184,25)(159)(27,154)(127) (8) A& P 2010
27 627a (352,275)(144,131)(150,135,67)(16,11,17,87)(5,6)(208,3)(24)(23)(47)(15,55,65)(134)(125,40)(85,10)(75) (4) JDS 1990?
27 636a (321,315)(6,141,168)(59,48,85,135)(11,37)(70)(44,78)(80,34)(180,69,27)(42,153)(46,66)(111)(106,20)(86) (4) DFL 1979
27 645a (354,291)(108,183)(163,152,39)(33,6)(27,87)(60)(12,171)(159)(11,71,70)(128,46)(32,14)(1,69)(18,68)(50) (4) PJF 1962
27 648a (333,315)(18,42,108,147)(116,121,90,24)(66)(225,39)(76,35,5)(46,80)(186)(19,16)(3,25,34)(22)(123)(114) (4) PJF 1962
27 648b (405,243)(118,125)(44,67,7)(132)(129,87,120,79,34)(11,56)(45)(164,16)(57,30)(148)(27,3)(123)(114,15)(99) (4) A& P 2010
27 652a (337,315)(22,69,87,137)(135,78,99,47)(61,55)(37,50)(57,21)(36,84)(6,73,13)(67)(200)(180,48)(140)(132) (4) JDS 1990?
27 688a (373,315)(58,102,155)(135,78,99,69,50)(6,43,53)(19,37)(88)(57,21)(70,10)(218)(36,84)(180,48)(158)(132) (4) JDS 1990?
27 690a (375,315)(70,88,157)(135,78,99,53,10)(43,37)(19,69)(6,50)(102)(57,21)(58,218)(36,84)(180,48)(160)(132) (4) JDS 1990?
27 690b (375,315)(73,67,175)(135,78,99,50,13)(6,61)(37,55)(87)(69,47)(57,21)(36,84)(22,200)(180,48)(178)(132) (4) JDS 1990?
27 795a (299,212,284)(87,125)(53,231)(170,216)(178)(124,46)(78,280,176,137)(202)(67,70)(104,44,28)(16,76,3)(73)(60) (8) PJF 1970
27 804a (348,201,255)(147,54)(309)(131,148,216)(114,17)(97,68)(240,123,129,101)(211)(28,73)(117,6)(111,52)(7,66)(59) (8) DFL 1979
27 820a (376,205,239)(171,34)(273)(174,237,136)(101,308)(111,63)(48,124,120,109)(159)(11,98)(44,87)(83,41)(1,43)(42) (4) DFL 1979
27 824a (383,273,168)(100,68)(32,36)(85,43,4)(40)(171,102)(42,1)(41)(22,146)(124)(206,177)(116,55)(325)(29,264)(235) (8) DFL 1979
27 825a (372,251,202)(47,25,28,102)(22,3)(31)(2,55,12)(253)(43)(200)(240,132)(108,156,321)(213,87,48)(39,165)(126) (4) PJF 1962
27 847a (493,354)(133,113,108)(5,103)(20,98)(75,78)(156,114,82,141)(72,3)(282)(32,50)(42,86,18)(68)(213)(198)(154) (4) JDS 1990?
27 849a (472,194,183)(11,172)(205)(44,43,85)(1,42)(209,41)(168)(377,95)(61,34)(27,7)(20,123,241)(108)(5,118)(113) (4) THW 1951
27 857a (488,369)(119,250)(172,147,73,72,143)(1,71)(74)(12,238)(226)(25,114,82)(197)(30,52)(8,22)(108,6)(14)(88) (4) A& P 2010
27 861a (311,369,181)(100,81)(13,20,48)(6,7)(105,1)(28)(76)(253,58)(195,215,17)(198)(297,151)(136,277)(146,5)(141) (8) DFL 1979
27 867a (490,377)(113,108,61,95)(27,34)(20,7)(136)(5,123)(209,205,194)(259)(11,183)(44,172)(168,41)(1,43)(42)(85) (4) THW 1951
27 869a (428,264,177)(61,116)(26,35)(281,9)(44)(24,92)(68)(160)(188,123,117)(64,170,324)(65,58)(122)(253)(16,154)(138) (4) PJF 1970?
27 872a (495,194,183)(11,172)(205)(44,43,85)(1,42)(209,41)(168)(377,118)(5,108,264)(123)(20,27,61)(136,7)(34)(95) (4) THW 1951
27 882a (532,350)(189,161)(28,133)(211,202,119)(112,105)(238)(231)(54,148)(139,35,37)(33,2)(31,8)(23,39)(71,16)(55) (4) CJB 1970?
27 890a (513,377)(136,123,118)(5,113)(20,108)(209,205,194,34,7)(27)(61)(282)(11,183)(44,172)(168,41)(1,43)(42)(85) (4) THW 1951
27 892a (449,443)(177,266)(223,226)(55,122)(220,3)(217,67)(72,102,92)(150,39)(111)(31,23,38)(81,21)(8,15)(60)(53) (4) JDS 1990?
27 904a (455,449)(223,226)(102,92,111,150)(31,23,38)(81,21)(72,39)(8,15)(60)(53)(122,67)(266)(55,232,3)(229)(177) (4) PJF 1970?
27 931a (342,281,165,143)(67,76)(120,45)(75,28,9)(19,66)(47)(61,216,4)(312)(248,155)(93,178,100)(341)(78,334)(256) (4) DFL 1979
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28 312a (128,100,84)(34,50)(28,54,18)(36,16)(86,70)(66)(44,46)(114)(112)(47,39)(8,7,24)(1,6)(51,5)(11) (8) GHM
28 335a (131,116,88)(28,60)(79,32,18,15)(67,64)(7,8)(14,4)(10,1)(9)(47,78)(19,140,31)(51,16)(35)(109) (8) JDS 1993 2003
28 374a (169,111,56,38)(18,20)(55,16,3)(1,5,14)(4)(9)(39)(88,117)(86,53,30)(23,66,29)(33,43)(146)(119) (8) PJF 1962
28 427a (233,194)(37,54,103)(20,17)(94,65,56,18)(41,30)(38)(11,19)(138,8)(130)(29,36)(100,16,7)(9,34)(25) (4) JDS 1993 2003
28 430a (234,196)(61,49,86)(57,41,65,71)(12,37)(48,25)(15,26)(148)(4,11)(54,3)(7)(59,6)(44)(125)(85,13) (4) A&P 2010
28 435a (176,147,112)(65,25,22)(3,19)(17,11)(29,118)(6,5)(24)(23)(116,89)(50,62)(38,12)(74)(27,170,48)(143) (16) A&P 2010
28 444a (254,190)(55,135)(16,39)(100,96,51,7)(23)(21,41)(72)(57,119)(14,38,44)(90,10)(24)(67,5)(62)(56,6) (4) JDS 1993 2003
28 450a (238,212)(62,53,97)(108,57,73)(9,44)(71)(30,27)(141)(39,34)(3,11,13)(25,8)(17,2)(15)(105)(104,4) (8) A&P 2010
28 457a (213,144,100)(36,64)(8,28)(132,20)(112)(86,56,71)(30,14,12)(63,181)(2,7,3)(16)(4,15,55)(11)(158) (4) A&P 2010
28 468a (221,133,54,60)(39,15)(9,7,12,32)(2,5)(23,3)(20)(1,74)(40)(140,33)(107)(117,104)(52,195)(13,143) (4) JDS 1993 2003
28 471a (227,144,100)(36,64)(8,28)(132,20)(112)(114,57,56)(49,195)(2,12,42)(41,11,4,1)(3)(7)(30)(16,146) (16) A&P 2010
28 472a (207,153,65,25,22)(3,19)(17,11)(6,5)(24)(23)(50,62)(38,12)(74)(143,48)(122)(118,89)(29,176,27)(149) (8) A&P 2010
28 475a (219,144,112)(32,80)(120,56)(8,72)(64)(126,48,45)(13,77,211)(38,10)(23)(7,16)(36,2)(9)(25)(4,134) (4) A&P 2010
28 488a (255,233)(111,122)(86,80,89)(26,54)(66,20)(45,144,11)(133)(46)(99)(43,29,40)(19,10)(9,1)(41)(38,5) (4) JDS 1993 2003
28 520a (299,221)(78,143)(97,70,113,65,32)(15,8,9)(7,1)(10)(18,4)(14)(84,156)(27,43)(124)(108,48)(12,72) (16) THW 1964 1971
28 532a (222,183,127)(66,61)(99,84)(5,56)(71)(136,86)(19,37)(1,18)(72)(15,69)(55)(26,88)(50,62)(196)(174,12) (8) JDS 1990 1993
28 550a (271,149,130)(19,15,26,70)(4,11)(165,7)(44)(114)(139,89,43)(86,236)(49,40)(57,69)(1,48)(140)(93,12) (4) JDS 1993 2003
28 557a (317,240)(77,50,113)(19,31)(8,11)(123,129,101,36,13)(10,1)(32)(23)(204)(28,73)(117,6)(111,52)(7,66) (4) A&P 2010
28 565a (247,152,166)(95,32,11,14)(8,3)(5,18,160)(13)(63)(178,148,79)(239)(30,46,72)(140,52,16)(36,26)(98) (4) JDS 1993 2003
28 568a (262,150,156)(144,6)(99,63)(36,27)(11,16)(95,28,10,2)(8,5)(142,120)(21)(18)(67)(88,56)(218)(22,186) (4) PJF 1964 1971
28 569a (239,151,179)(123,28)(207)(86,96,57)(22,101)(79)(76,10)(66,40)(26,194)(108,99)(168)(15,84)(75,27,6)(21) (8) JDS 1993 2003
28 571a (334,135,102)(33,69)(132,36)(105)(123,9)(114)(121,126,87)(56,181)(59,28)(3,53)(31)(116,5)(111,20)(91,19) (4) A&P 2010
28 576a (270,195,111)(60,51)(19,32)(24,26,10)(16,13)(45)(175,44)(42)(131)(154,116)(100,206)(38,78)(152,40)(112,6) (4) CJB pre 1990
28 577a (337,240)(65,62,113)(11,51)(32,25,8)(19)(23,2)(21)(123,129,101,16)(224)(28,73)(117,6)(111,52)(7,66) (4) THW 1948
28 581a (338,243)(95,148)(129,87,120,97)(44,104)(57,30)(81,60)(27,3)(123)(114,15)(99)(37,41,86)(65,16)(49,4) (4) A&P 2010
28 590a (258,182,150)(32,118)(120,94)(75,51,69,63)(8,110)(102)(19,101)(33,18)(82)(15,72)(66,9)(57)(212)(191,4) (4) A&P 2010
28 591a (328,263)(148,115)(127,118,83)(33,82)(35,180,49)(9,69,37,38)(136)(131)(17,19,1)(39)(15,2)(21)(76,8) (4) PJF pre 1982
28 592a (229,148,215)(81,67)(35,91,156)(130,159,21)(56)(82,65)(66,36,28)(221)(8,20)(37,204)(30,14)(2,18)(16) (16) JDS 1990 1993
28 596a (276,180,140)(40,100)(150,70)(10,90)(80)(167,109)(54,266)(1,53)(58,52)(6,24,75)(153,60,18)(42)(93,9) (4) JDS 1993 2003
28 596b (276,180,140)(40,100)(150,70)(10,90)(80)(171,105)(54,266)(42,60,3)(57)(24,18)(6,58,71)(149,52)(97,13) (4) JDS 1993 2003
28 600a (344,256)(75,76,105)(13,33,29)(28,48)(144,120,73,20)(57)(19,86)(53)(67)(183)(153)(56,64)(112,32)(80,8) (4) JDS 1993 2003
28 612a (312,146,75,79)(71,4)(83)(111,90,16)(99)(21,44,25)(109,23)(19,105)(86)(126,78,108)(54,246)(48,30)(192) (4) CJB pre 1990
28 612b (357,255)(102,153)(129,91,96,92,51)(204)(41,50)(33,59)(60,36)(7,26)(126,3)(44)(24,19)(35,15)(104)(99) (4) JDS 1993 2003
28 612c (357,255)(102,153)(143,135,130,51)(204)(5,125)(42,40,58)(112,31)(28,3)(2,24,14)(25,22)(10,4)(62)(56) (4) JDS 1993 2003
28 630a (300,160,77,93)(40,37)(21,72)(3,55)(43)(194,9)(19,53)(49,15)(34)(136)(144,102,54)(108,276)(42,60)(186) (4) CJB pre 1990
28 632a (321,311)(153,158)(178,143)(35,47,92,64,53,5)(163)(133,68,12)(59)(11,42)(44,31)(76,16)(73)(65,3)(62) (4) CJB pre 1990
28 645a (290,170,185)(155,15)(200)(160,130)(95,60)(260)(225)(50,43,67)(7,36)(57)(11,56)(1,10)(28,9)(19)(88,16) (8) CJB pre 1990
28 656a (379,277)(102,175)(174,164,143)(79,96)(134,9)(49,22,17)(51,113)(5,108)(103,43,28)(27)(76)(15,13)(2,62) (4) A&P 2010
28 660a (286,179,82,113)(51,31)(40,104)(19,12,20)(7,5)(2,3)(27,1)(64)(206)(168)(165,121)(99,275)(44,77)(209) (4) JDS 1990 1993
28 669a (303,216,150)(54,96)(12,42)(198,30)(168)(112,73,118)(28,45)(11,17)(111,255)(123)(109,71)(38,33)(144)(8,139) (4) A&P 2010
28 676a (379,297)(118,179)(129,90,117,43)(16,41,61)(34,9)(25)(80,20)(39,51)(60,200)(24,93)(168)(75)(140)(6,87) (4) A&P 2010
28 684a (390,294)(148,146)(141,117,132)(54,92)(80,68)(16,38)(24,21,72)(62,22)(162,50)(3,18)(153,15)(152)(33)(112) (4) JDS 1993 2003
28 702a (378,324)(48,53,69,154)(6,42)(37,16)(149,120,115)(85)(79)(15,224)(209)(29,32,59)(175,3)(35)(8,51)(43) (4) JDS 1993 2003
28 704a (395,309)(86,95,128)(180,174,127)(63,32)(31,1)(30,99)(55,69)(182)(168)(18,21,135)(129,39,12)(27,3)(24) (4) A&P 2010
28 712a (291,240,181)(87,94)(212,28)(108,7)(101)(178,113)(209)(65,48)(260)(243)(72,71,66)(5,61)(1,19,56)(55,18) (8) A&P 2010
28 714a (423,291)(96,195)(36,60)(163,152,120,24)(45,39)(6,228)(51)(171)(11,71,70)(128,46)(32,14)(1,69)(18,68) (4) PJF 1962
28 732a (276,207,249)(165,42)(291)(183,93)(90,3)(168)(273)(192,106,76,85)(30,46)(37,48)(86,34,16)(18,70,11)(59) (8) PJF 1962
28 732a (436,296)(113,183)(43,70)(101,76,120,114,25)(13,30)(21,4)(17)(253)(68)(32,44)(74,27)(20,12)(182)(176)(47) (4) PJF pre 1982
28 741a (348,259,134)(53,81)(25,28)(18,7)(4,105)(11)(29)(227,61)(166)(210,138)(99,69,108,255)(30,39)(183,27)(156) (4) PJF 1962
28 742a (422,320)(102,218)(209,101,84,130)(38,46)(80,21)(14,204)(59)(190)(139)(111,54,44)(7,11,26)(3,4)(57)(15) (16) PJF pre 1982
28 753a (287,249,217)(100,117)(181,68)(144,143)(151,17)(134)(1,323)(145)(285)(89,56)(26,30)(7,15,4)(34)(88,8)(23) (8) A&P 2010
28 756a (357,262,137)(81,56)(25,31)(57,43,6)(37)(80)(179,59,24)(11,46)(35)(120,20)(100)(189,168)(84,315)(21,231) (4) JDS 1990 1993
28 765a (297,231,237)(225,6)(243)(138,159)(117,21)(96,309)(81,62,100)(19,43)(213)(76,24)(5,25,70)(52,20)(45)(128) (8) PJF 1962
28 765b (381,202,96,86)(10,76)(106)(40,36)(4,32)(236,88,28)(60)(148)(159,81,84,57)(114,327)(78,3)(87)(225,12) (4) PJF 1962
28 770a (408,362)(190,172)(199,85,57,67)(47,10)(77)(59,26)(7,40)(33)(70,102)(91,218,90)(38,32)(163,36)(134)(128) (4) A&P 2010
28 779a (427,352)(75,63,214)(20,43)(198,156,140,8)(28)(5,38)(33)(71)(1,213)(212)(42,114)(154,86)(32,82)(68,18) (4) A&P 2010
28 780a (455,325)(130,195)(197,161,162,65)(260)(76,84,1)(163)(128,69)(39,25,12)(4,80)(16)(22,3)(19)(59,10)(49) (4) JDS 1993 2003
28 782a (297,281,204)(77,127)(81,227,50)(232,65)(177)(146)(21,274,124,68,63)(253)(17,46)(56,12)(29)(15,60)(150,45) (8) JDS 1990 1993
28 783a (441,342)(99,243)(236,193,111)(75,36)(3,42,198)(39)(156)(44,149)(106,51,47,31,1)(45)(16,15)(60)(4,59) (4) CJB pre 1990
28 792a (351,297,144)(53,36,55)(17,19)(42,26,2)(24,52)(16,34)(58)(6,46)(40)(207,234)(198,153)(45,288,27)(261) (16) CJB pre 1990
28 792b (351,297,144)(68,40,36)(4,7,25)(28,13,3)(10)(15,8)(33)(85,26)(59)(207,234)(198,153)(45,288,27)(261) (16) CJB pre 1990
28 792c (450,342)(144,198)(82,115,127,126)(90,54)(49,33)(252)(16,81,39,12)(216)(27,112)(65)(66)(146)(47,19)(28,103) (4) JDS 1990 1993
28 792d (450,342)(144,198)(149,81,94,126)(90,54)(68,13)(252)(32,27,48)(6,21)(23,8,1)(216)(7)(15)(69)(193,62) (4) JDS 1990 1993
28 792e (450,342)(144,198)(151,81,92,126)(90,54)(70,11)(252)(103)(216)(102,75,44)(147)(27,48)(89,40)(19,29)(49,10) (16) A&P 2010
28 802a (439,363)(123,240)(143,66,36,28,119,47)(8,20)(30,14)(72,98)(2,18)(16)(77,53)(244)(220)(79,19)(60,199) (8) A&P 2010
28 804a (357,213,234)(192,21)(255)(201,156)(108,84)(24,315)(45,139,104)(246)(35,26,43)(9,17)(152,23,8)(15,53)(38) (4) PJF pre 1982
28 804b (492,312)(105,207)(48,57)(27,21)(12,45)(33)(175,152,86,106)(285)(66,20)(43,83)(3,40)(61,160)(137,38)(123) (4) CJB pre 1990
28 805a (462,202,141)(61,80)(126,118,19)(99)(8,209)(134)(195,144,190,67)(276)(98,46)(83,153)(148,47)(101,44)(13,70) (4) JDS 1993 2003
28 807a (455,352)(103,249)(198,165,195)(43,206)(77,88)(6,37)(157,21,23)(154,44)(19,2)(17,8)(45)(36)(110,11)(99) (4) A&P 2010
28 811a (435,376)(134,242)(184,176,75)(101,108)(8,200,69)(62,95,193)(192)(131)(50,45)(5,12,28)(48,7)(19)(3,25) (16) A&P 2010
28 811b (460,351)(109,242)(151,101,152,88,77)(13,28,36)(69,17,2)(15)(50,51)(52,8)(44)(24,218)(200,1)(199,5) (4) A&P 2010
28 812a (435,377)(174,203)(175,73,71,116)(2,69)(75)(261,29)(8,20,41)(232)(27,44,12)(32)(202)(11,30)(68,19)(49) (4) JDS 1993 2003
28 815a (479,336)(195,75,66)(9,57)(51,33)(18,15)(72)(69)(191,184,104)(52,284)(59,97)(21,38)(53,152)(145,46)(135) (16) A&P 2010
28 816a (331,253,232)(21,211)(150,124)(204,127)(56,68)(105,45)(15,29,12)(65,146)(17,63)(60)(77,50)(46)(308,81)(281) (4) DFL 1979
28 820a (492,328)(123,205)(41,82)(186,162,185)(287)(24,86,27,13,12)(1,11)(14)(4,49,143)(142,68)(45)(94)(6,80) (4) JDS 1990 1993
28 820b (492,328)(123,205)(41,82)(190,66,49,89,139)(287)(17,32)(68,15)(47)(39,50)(6,80)(74)(189)(138,52)(34,120) (4) JDS 1990 1993
28 824a (436,388)(140,248)(187,157,92)(132,100)(13,9,14,33,88)(4,5)(17)(19)(201,3)(55)(32,68)(60,188)(164)(143) (4) PJF 1962
28 828a (381,213,234)(192,21)(255)(201,156,24)(132,84)(339)(45,139,104)(246)(35,26,43)(9,17)(152,23,8)(15,53)(38) (4) PJF pre 1982
28 834a (455,379)(139,240)(159,98,135,63)(72,66,36,28)(8,20)(61,37)(30,14)(2,18)(16)(95,35)(244)(220)(60,215) (8) A&P 2010
28 840a (450,390)(180,210)(119,88,123,120)(53,35)(97,22)(270,30)(47,111)(75)(240)(26,21)(5,16)(20,11)(27)(174,18) (4) JDS 1993 2003
28 847a (362,281,204)(77,127)(81,227,50)(177)(232,211)(65,339)(21,124,68,63)(253)(17,46)(56,12)(29)(15,60)(150,45) (4) JDS 1993 2003
28 847b (473,374)(99,275)(168,92,103,209)(36,45,11)(114)(19,17)(8,37)(2,23)(21)(206,6)(43)(77,198)(165,44)(157) (4) JDS 1990 1993
28 854a (466,388)(74,119,195)(29,45)(188,130,123,25)(38,16)(22,82,76)(60)(271)(265)(58,72)(200,32,14)(18,68)(50) (4) JDS 1993 2003
28 855a (460,220,175)(45,130)(180,85)(215)(60,120)(232,155,133)(335)(22,111)(88,89)(163,58,11)(47,51,1)(50,151)(105) (4) CJB pre 1990
28 868a (465,403)(186,217)(107,95,139,124)(12,83)(119)(279,31)(39,100)(248)(48,38,36)(2,9,25)(10,23,7)(16)(177) (4) JDS 1993 2003
28 868b (465,403)(186,217)(83,51,54,153,124)(32,19)(16,38)(13,22)(128)(60)(279,31)(59,1)(53,101)(248)(5,48)(192) (4) JDS 1993 2003
28 872a (437,267,168)(78,90)(21,45,12)(102)(264,24)(69)(171)(131,118,188)(94,341)(13,105)(144)(35,247)(52,88)(160,36) (4) A&P 2010
28 877a (471,406)(25,22,131,228)(3,19)(17,11)(6,5)(24)(23)(173,113,166,66)(100,97)(60,53)(82,243)(240,79)(233) (4) A&P 2010
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3.14 Bouwkampcode listing of CPSSs, order 28, part 2
order sizeID bouwkampcode isomers author year year

28 1015a (382,280,188,165)(23,142)(92,119)(372)(261)(199,183)(16,167)(84,177)(215)(363,93)(47,120)(270)(17,30)(219,13)(43) (16) WTT 1940
28 1015b (593,422)(247,175)(222,164,207)(72,103)(154,116,49)(18,85)(67)(80,41,43)(38,230)(39,2)(37,215)(200,22)(192) (48) AHS 1940
28 1032a (477,308,247)(138,109)(135,173)(29,80)(116,51)(49,82)(97,38)(258,219)(59,152)(16,33)(132)(115)(156)(399)(39,336) (8) A&P 2010
28 1049a (560,489)(232,257)(222,177,161)(16,49,328)(45,115,33)(154,103)(82)(267)(51,52)(197)(149,41,14,1)(13,40)(27) (8) A&P 2010
28 1056a (522,292,242)(73,169)(269,23)(96)(265)(199,130,193)(154,115)(36,25,69)(380)(9,16)(2,7)(33,5)(28)(6,341) (32) A&P 2010
28 1057a (396,307,354)(260,47)(401)(276,120)(69,51)(18,105,188)(87)(385,83)(302,190,180)(10,48,122)(112,50,38)(12,74) (8) A&P 2010
28 1064a (431,379,254)(132,122)(10,112)(52,172,155)(142)(285,198)(38,74)(2,36)(144)(17,138)(189)(110)(87,111)(392)(348,24) (8) JDS 1993 2003
28 1069a (545,524)(188,336)(213,165,167)(163,2)(357)(131,82)(49,33)(209,72,55)(196)(180)(18,37)(71,1)(19)(56)(66,5) (16) A&P 2010
28 1071a (588,483)(225,258)(230,157,201)(81,144)(111,147)(73,84)(282)(253,50)(20,21,43)(19,1)(22)(219,36)(69)(65)(183) (4) PJF 1962
28 1073a (465,349,259)(90,169)(360,79)(248)(111,133,221)(89,22)(67,88)(156)(33,62,153)(135,174)(364,29)(91)(252,39)(244) (16) WTT 1948
28 1075a (427,359,289)(70,219)(280,149)(215,212)(368)(56,436)(162,53)(109)(271)(199,105,64)(33,31)(2,29)(8,27)(94,19) (16) A&P 2010
28 1076a (492,332,252)(83,169)(199,130,3)(86)(255)(69,36,25)(9,16)(269,223)(2,7)(33,5)(28)(184,145)(400)(46,361) (32) A&P 2010
28 1078a (593,485)(170,315)(254,277,62)(232)(160,155)(231,23)(208,75,17)(58,191)(133)(5,8,19,123)(118,44,3)(11)(30) (8) A&P 2010
28 1080a (510,270,300)(240,30)(330)(341,289,120)(450)(137,152)(97,64,95,85)(33,31)(10,144,53,15)(2,134)(132)(38,129) (4) JDS 1993 2003
28 1089a (585,504)(213,126,165)(251,202,132)(87,39)(48,156)(372,108)(47,25,28,102)(22,3)(31)(264)(2,55,12)(253)(43) (4) PJF 1962
28 1089b (660,429)(231,198)(33,165)(248,268,137,139,132)(297)(135,2)(141)(181,67)(47,161,60)(56,71,8)(149)(114)(101,15) (4) JDS 1993 2003
28 1092a (585,507)(234,273)(138,75,43,54,119,156)(32,11)(65)(63,44)(228)(201)(351,39)(312)(168,25,8)(17,59,160)(42) (4) JDS 1993 2003
28 1093a (593,500)(147,353)(284,255,54)(201)(97,114,245)(123,129,101)(216,68)(148,17)(28,73)(131)(117,6)(111,52)(7,66) (8) A&P 2010
28 1108a (593,515)(78,124,313)(231,178,216,46)(170)(53,125)(87,299)(284)(176,137)(212)(67,70)(104,44,28)(16,76,3)(73) (8) PJF pre 1982
28 1113a (639,474)(165,309)(275,238,204,87)(51,36)(15,21)(66)(330)(270)(113,125)(199,76)(123,43,23)(14,111)(20,3)(17) (4) PJF 1962
28 1115a (582,533)(48,95,135,132,123)(1,47)(279,304)(142)(9,114)(36,105)(102,33)(69)(187,345)(254,25)(229,100)(29,158) (4) A&P 2010
28 1116a (527,305,161,123)(38,85)(144,55)(8,17,60)(52,11)(2,15)(13)(28)(140)(346,103)(243)(279,248)(124,465)(31,341) (4) JDS 1990 1993
28 1116b (651,465)(186,279)(242,261,241,93)(372)(96,145)(223,19)(204,76)(128,44)(39,5)(28,43,79)(6,22)(45)(7,36) (4) JDS 1993 2003
28 1131a (651,480)(171,309)(261,168,164,124,105)(72,33)(71,53)(342)(4,41,119)(135,37)(18,107)(89)(78)(219,42)(197)(196) (4) A&P 2010
28 1132a (658,474)(184,131,159)(53,38,40)(12,147)(15,23)(52)(270,264,246,122,8)(31)(83)(352)(18,228)(72,210)(204,66) (4) JDS 1993 2003
28 1134a (684,450)(243,207)(36,171)(251,138,142,153)(144,135)(70,45,23)(19,123)(306)(297)(42)(25,20)(62)(95)(199,52)(185) (4) JDS 1990 1993
28 1137a (593,544)(49,145,122,228)(332,310)(23,99)(168)(92,7)(85,150)(280,65)(22,54,234)(215)(212,110,32)(86)(102,8) (16) PJF 1962
28 1138a (478,302,358)(246,56)(414)(172,179,127)(57,189)(52,132)(165,7)(158,80)(401)(216,198)(323)(30,168)(150,54,12)(42) (8) JDS 1993 2003
28 1140a (625,515)(202,176,137)(231,178,216)(67,70)(104,44,28)(124,78)(16,76,3)(73)(60)(46,345)(53,125)(87,299)(284) (4) JDS 1990 1993
28 1145a (657,488)(274,214)(288,264,105)(60,154)(182,163,94)(69,62,117)(7,55)(40,224)(19,220)(201)(200,72,16)(56)(172) (4) A&P 2010
28 1151a (644,507)(184,164,159)(315,282,47)(5,154)(20,149)(122,129)(115,7)(108,331)(57,225)(223)(192,99,24)(81)(93,6) (4) A&P 2010
28 1152a (672,480)(192,288)(218,228,84,111,127,96)(57,27)(384)(30,92,16)(143)(87)(25,67)(120,98)(88,252)(210)(22,164) (4) A&P 2010
28 1155a (645,510)(135,375)(228,113,154,285)(61,52)(11,143)(9,25,29)(54,16)(37,4)(33)(70)(282)(105,270)(225,60)(213) (4) CJB pre 1990
28 1155a (700,455)(245,210)(35,175)(263,164,176,237,140)(315)(120,44)(32,83,61)(76)(80,218)(25,58)(192,71)(50,171)(138) (4) JDS 1990 1993
28 1157a (593,564)(97,114,353)(309,216,68)(148,17)(131)(147,348)(255,54)(123,129,101)(201)(28,73)(117,6)(111,52)(7,66) (8) JDS 1993 2003
28 1164a (593,571)(22,54,145,122,228)(261,212,110,32)(86)(23,99)(102,8)(94)(168)(92,7)(85,150)(49,359)(310)(280,65) (4) JDS 1993 2003
28 1164b (684,480)(171,309)(33,138)(261,168,164,124)(72,375)(71,53)(4,41,119)(135,37)(18,107)(89)(78)(219,42)(197)(196) (4) A&P 2010
28 1170a (704,466)(176,290)(62,114)(247,223,180,74,42)(32,10)(414)(106)(286)(52,68,103)(219,28)(80)(33,35)(31,2)(140) (4) A&P 2010
28 1170b (704,466)(176,290)(62,114)(267,203,180,74,42)(32,10)(414)(106)(286)(80,123)(199,68)(52,28)(13,15)(11,2)(140) (4) A&P 2010
28 1175a (507,316,352)(280,36)(388)(266,41,38,73,89)(3,35)(44)(12,23,57,16)(45,11)(241,144)(34)(136)(97,435)(402) (4) JDS 1993 2003
28 1186a (671,515)(202,176,137)(67,70)(231,178,216,46)(104,44,28)(170,78)(16,76,3)(73)(60)(391)(53,125)(87,299)(284) (4) PJF pre 1982
28 1200a (700,500)(200,300)(277,152,144,227,100)(400)(61,83)(97,55)(2,59)(57)(37,273)(82,15)(67,101)(223,54)(169,34) (4) JDS 1993 2003
28 1208a (615,593)(22,54,234,283)(280,215,110,32)(86)(102,8)(94)(381,49)(65,150)(332)(168,92,85)(7,228)(99)(145,23) (4) A&P 2010
28 1211a (431,379,401)(52,305,22)(423)(230,253)(108,99,23)(160,281,140)(15,84)(75,27,6)(21)(48)(176,387)(367)(246,35) (4) A&P 2010
28 1224a (575,313,106,84,146)(22,62)(128)(88,120)(184,32)(152)(208,105)(136,305)(175,33)(169)(306,269)(148,27)(501)(37,380) (4) A&P 2010
28 1224b (714,510)(204,306)(258,207,167,184,102)(408)(70,97)(66,118)(57,120,30)(100)(14,52)(252,6)(63)(73,38)(208)(183) (4) JDS 1993 2003
28 1224c (714,510)(204,306)(286,270,260,102)(408)(10,250)(85,79,116)(224,62)(55,7)(50,29)(48,44)(21,8)(124)(4,111) (4) JDS 1993 2003
28 1225a (632,593)(39,237,317)(167,172,134,198)(38,96)(162,5)(157,58)(187,166,82)(154)(2,315)(84)(264,55)(21,229)(209) (4) PJF pre 1982
28 1229a (621,608)(169,174,265)(259,206,156)(237,88)(83,91)(53,153)(171)(356)(133,79,100)(54,25)(4,249)(29)(216)(215,22) (4) A&P 2010
28 1231a (623,608)(101,140,103,264)(159,169,209,86)(187)(37,66)(148,29)(95)(149,10)(139,40)(87,162)(359)(335)(12,75)(300) (4) JDS 1993 2003
28 1236a (721,515)(206,309)(306,228,290,103)(412)(101,127)(65,225)(209,67,30)(7,44,50)(37)(32,160)(142,6)(48,8)(40) (4) JDS 1993 2003
28 1240a (632,608)(148,187,273)(159,169,209,95)(66,29)(37,140)(149,10)(103)(101,86)(139,40)(87,162)(359)(344)(12,75)(300) (4) JDS 1993 2003
28 1272a (742,530)(212,318)(278,304,266,106)(424)(43,93,130)(252,26)(226,99,5)(48)(46,2)(62,33)(29,4)(134)(127,18) (4) JDS 1993 2003
28 1272b (742,530)(212,318)(278,304,266,106)(424)(59,77,130)(252,26)(226,83,21)(62,18)(46,49)(143,2)(48)(45,4)(134) (4) JDS 1993 2003
28 1284a (749,535)(214,321)(296,160,156,244,107)(428)(4,64,88)(104,60)(59,65)(41,291)(89,15)(74)(106)(239,57)(182,38) (4) JDS 1993 2003
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