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 The cut-up bookmark. When I was in sixth grade my teacher 
handed out blank cards and asked us to make bookmarks. I 
decided to cut mine up. I challenged myself to make a hard 
puzzle that had just a few simple pieces. 

 

 

First attempt. Here’s the puzzle I made. It has just four simple 
pieces and is decently hard to solve. And by happy accident 
there are two ways to make a rectangle with these pieces. 

Notice that the green line is borders one piece on one side, 
and two pieces on the other side. This sort of edge makes the 
puzzle harder to solve, since you can’t find which piece goes 
with which just by matching edges of the same length. But 
along the purple edge, two pieces do share a complete edge. I 
wondered: can one make a dissection where no two pieces 
share a complete edge? 

 

The squared square. The answer is yes, and such 
constructions are called “motley dissections,” a term coined by 
computer scientist Donald Knuth. The most famous motley 
dissection is the squared square — a square cut into squares 
all of different sizes. At left is the smallest possible squared 
square, confirmed by computers search, which contains 21 
squares. No two squares here completely share an edge, 
because if they did, the squares would be the same size. 
Martin Gardner wrote about the squared square, first 
discovered by graph theorist William Tutte and others, in his 
Scientific American column [1]. 

 

No cubed cube. If a squared square is possible, what about a 
cubed cube? Impossible, unfortunately. Here is the proof from 
Gardner’s column. Assume it is possible to cube a cube. The 
ground floor must be a squared square. Within that square 
there must be a smallest square S. We know that S cannot 
touch the outer edge of the base square, because then the 
neighboring squares, which are all larger than S, would 
overlap. Therefore, S must be in the interior of the base, where 
the cube C with base S is surrounded on all sides by larger, 
taller cubes. But that means that the top surface of C must be 
a smaller squared square, because cubes that rest on the top 
surface of C cannot extend beyond its edges. This logic creates 
an infinite sequence of smaller and smaller cubes. Therefore, a 
cube cannot be cut into a finite number of cubes, all of 
different sizes. 

 



 

 

Polygons  

 

What other shapes can be cut up as motley dissections? Let’s 
try other polygons. 

Triangles. You can cut a triangle into motley triangles. You can 
do it with four triangles. Six triangles. Seven triangles. Or more.  

You can cut a triangle into six quadrilaterals. You can cut a 
triangle into nine convex quadrilaterals. (I believe this 
construction is minimal, but I don’t have a proof.) 

You cannot, however, cut a convex quadrilateral into triangles, 
unless you use infinitely many. The proof involves counting the 
number of edges, concave angles, and “receptive” edges in the 
perimeter polygon — a receptive edge” is one that is already 
shared by two other polygons, and thus can receive another 
polygon along its full exposed length without violating the 
motley condition. Note that convexity matters — it is easy to 
cut a concave quadrilateral into motley triangles. 

 

Quadrilaterals. You can cut a rectangle into five or more 
rectangles. Other authors have called this a "perfectly 
dissected rectangle", or “PDR” [3]. An interesting challenge is to 
find a five-rectangle PDR with dimensions that are ten distinct 
integers, with the largest number being as small as possible. 11 
is possible, but 10 is not. 

 

Hammocks. You can think of the rectangle cut into 5 
rectangles as four vertical poles (labeled a,b,c,d at left) with 
hammocks hung between all 6 possible pairs of lines. The 
rectangles are labeled with the pair of lines they hang between. 
Notice that I count the whole rectangle as a sixth rectangle; you 
can think of the whole rectangle as the back side, and the other 
five rectangles as the front side.  

Slide the four “poles” left and right and you get different 
variations on the rectangled rectangle. For instance, if you 
swap the positions of line a and line b, as shown at left, the 
upper left blue rectangle rotates around to the back side of the 
construction. You can think of this construction as a shape that 
has been cut into two rectangles one way, and four rectangles 
in a different way, with all 6 rectangles maintaining a motley 
relationship. All four of these constructions will turn out to be 
important when we move up a dimension later in this article. 

  



 

Pentagons. You can cut a pentagon into pentagons, some of 
which are concave. You can cut a hexagon into a triangle, 
quadrilateral, pentagon and hexagon. But you can’t cut a 
pentagon into convex pentagons.  

Hexagons. After that, you’re stuck. You can’t cut a hexagon into 
hexagons, a heptagon into heptagons, etc., for essentially the 
same reason you can't tile a sphere with hexagons. The proof 
is based on Euler’s formula for polyhedra, V-E+F=2, which 
relates the numbers of vertices, edges and faces in a 
polyhedron.  

 

 

Relation to regular polyhedra  
Polyhedra. The simplest motley dissections 
of the triangle into triangles, rectangle into 
rectangles, and pentagon into pentagons, 
shown at right, look suspiciously similar to 
the Schlegel projections of three regular 
polyhedra: the tetrahedron, cube and 
dodecahedron. What is going on here? 

 

 

Duals. The “dual” of a polyhedron is the 
polyhedron created by mapping vertices to 
faces, edges to edges, and faces to vertices. 
For instance, the dual of the cube is the 
octahedron, as shown at right. Every 
relationship in the original polyhedron maps 
to an analogous relationship in the dual. For 
instance, every vertex of the cube is an 
endpoint of three edges, which maps to every 
face of the octahedron having three edges. 
Although the cube and octahedron are 
geometrically different, they have the same 
combinatorial structure, which geometer 
Branko Grünbaum calls an “abstract 
polyhedron” [6] — the graph structure in 
which vertices, edges and faces are abstract 
objects, and two objects (e.g. a vertex and a 
face) are connected by an edge (in the graph 
theory sense) if they are “incident” (e.g. the 
vertex is a corner of the face). 

 



  

Motley duals. Interestingly, motley 
dissections also have a dual-like relationship 
to polyhedra, but with the roles of vertices 
and edges reversed. For instance, the cube is 
the “pseudo-dual” of the motley dissection of 
a rectangle into five rectangles, as shown at 
right. Check it out: the cube has 6 faces, 12 
edges, and 8 vertices. The pseudo-cube has 6 
faces, 8 edges, and 12 vertices. Each face of 
the pseudo-cube, including the whole shape, 
is a rectangle, each edge has 3, not 2 vertices, 
and each vertex is a corner of just 2 
rectangles (a vertex does not count as a 
corner of a rectangle if it is situated in the 
middle of a longer straight side of the 
rectangle). 

 

Pseudo-octahedron and pseudo-
tetrahedron. As shown at right, the pseudo-
dual of the octahedron is a motley dissection 
of a curvilinear concave triangle into 7 
triangles, with 4 vertices along each edge.  

And as shown below, the tetrahedron has two 
different pseudo-duals: a motley dissection of 
a curvilinear concave triangle into 3 triangles, 
and a motley dissection of a concave 
curvilinear digon (2-sided polygon) into 5 
curvilinear digons. (Motley digon dissections 
are rare.)   

 

  



Of the other regular polyhedral, the dodecahedron has a pseudo-dual (the pentagon cut into pentagons, 
but the icosahedron, alas, does not have a pseudo-dual. Here is a complete list of the regular polyhedra 
and their pseudo duals. 

  



 

4D polytopes 
If the pseudo-dual of a 3D polyhedron is a 2D motley dissection, what is the pseudo-dual of a 4D 
polyhedron, aka polytope? I’m happy to report that four of the six regular 4D polytopes have pseudo-duals 
that are fine 3D motley dissections. You can find excellent descriptions and diagrams of the regular 4d 
polytopes in Hilbert and Cohn-Vossen’s book Geometry and the Imagination [5]. 

 

Pseudo 5-cell. The 5-cell is the 4D equivalent 
of the tetrahedron, with five tetrahedral 3-
faces, 10 2-faces, 10 edges, and 5 vertices. At 
right are pictures of the five-cell and it’s 
pseudo-dual. In this relationship, the roles of 
vertices and 2-faces are reversed.  

Like the pseudo-tetrahedron, the pseudo-5-
cell is made up of curvilinear tetrahedra. Four 
planar pieces extend the faces of a central 
tetrahedron, and a fifth spherical 2-face 
wraps around the outside. Note that each of 
the 2-faces is itself a pseudo-tetrahedron, 
which is a motley construction involving 3 
triangles on one side a 1 on the other, or 2 
triangles on one side and 2 on the other. 

 

Pseudo 8-cell (pseudo-hypercube). The 8-
cell, more commonly called the hypercube or 
tesseract, is a 4D solid bounded by eight 
cubes. In the pseudo dual, the eight cubical 
faces turn into eight octahedral faces, since 
the pseudo-dual operation maps 3-faces onto 
their conventional 3D duals. 

The drawing at right of the pseudo-dual of 
the hypercube shows only half of the motley 
dissection of a curvilinear octahedron into 7 
octahedron. In this drawing we see a central 
octahedron with flat planar faces. The eight 
triangular faces are extended outward in a 
pinwheel fashion to form eight curvilinear 
concave quadrilaterals. The various new 
curvilinear triangles form six half-octahedra, 
each with 4 triangular faces. Joining the eight 
exposed curvilinear edges to an inside out 
larger copy of the entire same figure 
completes the half-octahedra, for a total of 7 
complete octahedra inside, and one concave 
curvilinear octahedron on the outside 
surface. 

 



Pseudo 16-cell.  The 16-cell is the dual of the 
hypercube, with 16 tetrahedral faces. Its 
pseudo dual is a motley dissection of a 
concave curvilinear tetrahedron into 15 
curvilinear tetrahedra, bounded by a total of 
8 planar components, each of which is a 
pseudo octahedron. 

The drawings below show construction of the 
motley dissection. We start with a flat 
concave curvilinear hexagon, cut into 4 
triangles. On this equatorial plane we build 1 
tetrahedron the middle and 3 around it. 

 

 

We add 3 small tetrahedra that act as dams in the valleys, then we fill the depression in the middle to the 
brim with 1 tetrahedron the points down, like water filling a triangular lakebed. Then we add three big 
curvilinear tetrahedra on top of the surface of this lake that leave only a small triangle of the lake showing 
in the middle. These 3 tetrahedra are like big claws…they start above the initial hexagon, then extend their 
talons through the plane of the hexagon to the other side. The red lines show where the talons pierce the 
plane of the hexagon; these lines are not edges of any of the tetrahedra. 

 

Now let’s peek below the equatorial plane. Again we cut the curvilinear hexagon into 4 triangles, and 
attach 4 tetrahedra, hanging down from the plane. We complete the model by seeing the tips of the 3 
claws reach under the equator and end at three points near the middle of the underside. That’s a total of 
15 curvilinear tetrahedra, plus the outside surface, which is itself a concave curvilinear tetrahedron. 

 

  



 

The boxed box: pseudo dual of the 24-cell 
The most exciting moment in my investigation 
of motley dissections occurred when I 
considered the pseudo dual of the 24-cell. 

The hypercube has cubical faces, which means 
its pseudo-dual has octahedral faces. The 24-
cell — a wonderful unique self-dual 
polyhedron not directly analogous to a regular 
polyhedron in any other dimension —has 
octahedral faces, which means its pseudo-dual 
has cubical faces, or rather faces that are 6-
sided rectangular solids, which I will call 
“boxes”. 

And that meant to me that although the cubed 
cannot be cubed, it seemed likely that the box 
could be boxed, which is to say that a box 
(rectangular solid) can be dissected into a 
finite number of boxes such that no two boxes 
are bounded by the same two parallel planes 
in any of the three rectilinear directions. 

 

Armed with this intuition, I quickly found a motley dissection of a rectangular box into 23 smaller 
rectangular boxes. The construction is isomorphic to the 24-cell, with each of the 24 boxes (the whole box 
counts as one of the boxes) corresponding to one of the 24 octahedral 3-faces of the 24-cell, and each of 
the 24 planar faces of the boxed box corresponding to one of the 24 vertices of the 24-cell. (Remember 
that the 24-cell is self-dual, so it has the same number of 3-faces and vertices.) 

  



There are many combinatorially distinct boxed boxes with 23 boxes. In every such construction there 
are a total of 24 planar walls — 8 parallel walls in each of the three orthogonal directions. Here are 8 
parallel walls from one such construction, starting with the ground floor and working upward. 

 

The base (floor 0) of a 
boxed box must be a 
rectangled rectangle of 
boxes. 

 

These five boxes rise to 
different heights. Floor 1 
must be the top of just 
one of these boxes. 

 

Floor 2 is the top of two 
boxes: one starting from 
floor 0, and one starting 
from floor 1. 

 

 

Floor 3 is the top of three 
boxes, and the bottom of 
three more boxes. 
 

 

Now the pattern repeats 
in reverse. Floor 4 is the 
top of three boxes, and 
the bottom of three. 

 

Floor 5 is the top of 4 
boxes and the bottom of 
two. 
 

 

 

Floor 6 is the top of 5 
boxes and the bottom of 
one. 
 

 

Floor 7 is the top of 5 
boxes, and also the top of 
the whole box. 
 

 

 

 

 

 

 

  



Because I love symmetry, I look for and found a construction with 6-fold 3-bar symmetry — the highest 
possible degree of symmetry for such a construction. Here is the construction built up from one corner of 
the bounding cube to the other, emphasizing the 3-fold rotational symmetry. We start in one corner, with 
a 2x2x2 cube. We cover that with 6 boxes in 2 sizes, which spin around it in 3-fold rotational symmetry. 

                     

Next we place the second of 5 cubes that go up the main spatial diagonal. This cube is 1x1x1, and it is 
surrounded on the 3 back faces by yellow boxes, and on the 3 front faces by 3 blue boxes. Then we place 
the third cube in the center of the whole construction and surround it by 3 more blue boxes, which are 
twisted mirror images of the first 3 blue boxes. We are now into the second half of the construction. 

                     

We place the fourth cube an cover it with 3 more yellow boxes, which are twisted mirror images of the first 
3 yellow boxes. Finally we complete the whole cube by placing 3 more white boxes and a fifth and final 
cube. In total, there are 6 cubes (5 red + the whole cube) + 6 white boxes + 6 yellow boxes + 6 blue boxes = 
24 boxes (23, if you don’t count the whole cube). 

                 



 

Paper Model 
Paper model. When I wrote Martin Gardner about the boxed box, I included a paper model of the 
Boxed Box, which came apart into 6 congruent units that folded flat. The component parts and the 
assembly sequence are shown on the next page. I included a transparent colored version of this model 
in the G4G13 gift bag, which you can download at scottkim.com/motley. 

 
 

Bill Cutler. Gardner wrote me back to tell me that mathematician 
and puzzle maker William Cutler had simultaneously discovered 
the same idea, albeit by completely different means. In Cutler’s 
version, all 72 dimensions of all 24 boxes (including the whole 
box) are different sizes. Cutler wrote up his discovery in the 
Journal of Recreational Mathematics, [6]. Cutler sells a wooden 
version of his construction, shown at left.  

Donald Knuth. In 2017 my PhD advisor and Stanford computer scientist Donald Knuth called to tell me 
the surprising news that my construction was the only possible boxed box with 3-bar symmetry. He had 
dug up my correspondence with Gardner, and written a program to confirm uniqueness, to use as an 
exercise in his magnum opus The Art of Computer Programming [7]. Knuth once told me half-seriously 
that finding the right name for a project is half the work. So after all these years he was the one to give 
my dissections a name, and call them “motley dissections”. 
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Part 1 (x3) Part 2 (x3) Part 3 (x3) Part 4 (x3)

Start with part 1.
You will tape 4 parts
together to make
one module.

Tape part 2 to part 1 
like this. Flex and 
crease the hinge 
sharply back and forth 
several times, to make 
the model more exact.

Slip part 3 under part 2 
so left edge of part 2 
matches vertical line 
down MIDDLE of part 3. 
Tape pieces together. 
Flex hinge back & forth.

Tape part 4 to part 2. 
Unfold hinges.
Tape so
this 
shape
is rigid.

1. Cut out parts along the 
dotted lines from sheet 1, to 
get three copies of four 
different parts. Each part is 
made of six motley 
overlapping rectangles in 4 
colors: white, yellow, blue 
(stripes), and red (dots).

The Boxed Box
(aka Motley Cube)
You need: scissors, clear tape, and
sheet 1 and 2 from this packet.

2. Tape together 
one set of 4 
different parts as 
show here:

A motley dissection by 
Scott Kim, scott@scottkim.com

Exchange gift for 
Gathering 4 Gardner 13

opaque version

3. Do the same with 2 other sets of 4 
different shapes, to make a total of 3 
congruent modules. Interlock the 3 
modules symmetrically so the 3 big 
squares make half a cube, with a 
complete 2x2x2 red cube in the far 
corner, which touches a complete 
1x1x1 red cube at a vertex, which 
touches an open half 1x1x1 red cube 
in front. You will have to push and 
bend parts slightly to get them to fit. 
Finished structure will hold together 
quite well. Tape if you want to make 
structure more stable, and crease 
every taped join so angles hold at 90°.



Start with part 1.
You will tape 4 parts
together to make
one module.

Tape part 2 to part 1 
like this. Flex and 
crease the hinge 
sharply back and forth 
several times, to make 
the model more exact.

Slip part 3 under part 2 
so left edge of part 2 
matches vertical line 
down MIDDLE of  part 
3. Tape pieces together. 
Flex hinge back & forth.

Finally, tape part 4 to
part 2. Flex hinge so
it bends both ways.
Tape module so it is 
stable. Interlock 3 
modules. 

+ =

The Boxed Box is a cube cut into 23 (the minimum number) rectangular boxes in a “motley” 
manner — no two boxes are bounded by the same two parallel planes in any orthogonal direction. 
Boxes come in sets of 6, arranged symmetrically about an axis of 5 cubes up the diagonal. Donald 
Knuth confirmed that this construction is the only minimal Boxed Box with this 3-bar symmetry. 

Bill Cutler and I discovered the boxed box independently in the mid 70s. Bill sells a wood version at 
billcutlerpuzzles.com. Bill wanted to make a tricky puzzle while I arrived at this construction via the 
4th dimension — the boxed box is isomorphic to the 24-cell (one of the six regular 4D solids).

This is a color version of a paper model I made first for Martin Gardner. More info at scottkim.com.

4. Cut out & assemble parts 
from sheet 2 in the same way, 
but in mirror image, to make 
three mirrored modules. 
Interlock and tape to make a 
mirror image of the first half.

5. Join the two halves to make a complete cube. You’ll see a string of 5 touching red cubes up the 
spatial diagonal. Tape the halves together along one edge so the whole structure hinges open.

1 +7 +4 +4 +3 +4 = 23




