Adam - "I wrote a program to find if there were packings for squares of side
Often, in mathematics, when it is not possible to make progress on a field of research, or in solving a particular problem, a good strategy to proceed is to relax one of the constraints that defines the problem. In the case of squared squares and square tilings generally, one of the main problems has been the search for 'perfect' square tilings, that is every square in the tiling should be a different size. The most 'perfect' tiling would be one that uses all integers from
However, what if like Adam, we relax the condition that we have to tile, or dissect into squares, a particular geometric shape such as a square, rectangle, cylinder or torus? What if we are not concerned about the shape of the boundary?
The square tilings constructed by Adam Ponting create simple 'perfect' square tilings from size
How to number the squares:
To illustrate the method, see it applied for
Squares are arranged with what Adam calls alternating h-lines and v-lines, shown as black lines in the picture. An h-line is a horizontal line segment with two squares on each side of it, a v-line, a vertical line segment with two squares on each side. The arrangement has a h-line on the top left, v-line on the top right.
Some more examples for
Though Adam's construction can be used with any odd n^2, covering an arbitrarily large area, any particular square packing is still of finite size
Adam tried to extend some of his square packings into a plane tiling by continuing their arithmetic sequences, but they didn't fit together, along a single radial seam. By generalizing the grid method of construction, he found related grids that do tile the plane - the first being the ‘double rainbow’ tiling (Figure 1) - and recently he has been studying and exploring many variations to this type of tiling, made from grids filled with arithmetic sequences of integers. It turns out that every non-trivial tiling made with sequence grids doubly tiles the plane, and the apparent "not fitting" of extended square packings was the squares of the 2 layers not being aligned. He found the rules that govern when these layers are aligned and when not.
It should be noted that although these extended square tilings tile the plane, they are no longer 'perfect' as multiple copies of the same sized squares exist in the tiling.
Adam wroteup his findings on squaring the plane in a paper on sequence grids & tilings : square tilings paper.pdf [7]
They’re built with alternating h-lines and v-lines. An h-line consists of four squares, two on either side of a horizontal line, with equal sums
Start with any h-line: e.g.
Extend the arithmetic progressions along the diagonals:
Then fill in a diagonal next to one of these 2, with any arithmetic progression. e.g:
All the empty squares have now been determined and can be filled in, making the sums
It seems that any grid of numbers constructed this way makes a tesselation of the plane. Also, it seems that all the 0-sized squares (marked them with a small circle) lie in a straight line in the tesselation, no matter what sequences are used. The square packings found a few years ago are each a subset area of one of these tesselations, where there’s only 1 of each sized square.