Squaring.net >> IRTS >> DUIRTSS >> Order 18

**
Derivative UltraPerfect Isosceles Right Triangled Square
**

**Title:** __t 18:238JH1of2 GHM

**Order:** 18

**Horizontal side:** 238 **Vertical side:** 238

**Elements:** 8√2, 16, 16√2, 28, 32, 28√2, 42, 32√2, 48, 35√2, 56, 42√2, 70, 98, 70√2, 98√2, 105√2, 168.

**Code:** 1687 0 238 356 133 203 707 168 238 706 168 168 1050 133 203 286 0 70 565 28 42 324 60 66 323 92 66 487 92 98 980 140 98 981 238 98 285 0 42 164 76 50 163 92 50 84 84 42 425 0 0 424 42 0

The properties below may precede order:side in a tiling's title:

- c = crossed. There is a tile-corner traversed by two lines. 18:48JB2of5 is the only known crossed DUIRTS of order < 19.
- d = double-pentagon patterned. Every such tiling is a subdivision of an instance of the same deformable tiling by two 45-90-90-90-225 pentagons with a shared side, four triangles and two pseudotriangles.
- e = elegant. No tile-corner is just a T-junction. Such tilings may be considered aesthetically pleasing. The only known elegant DUIRTS's of order < 19 are of order 18 and side 147.
- p/r/t = pseudotriangular/rectangular/triangular inclusion subdivided into at least 6/5/6 triangles respectively.

**Credit for Discovery**

Geoffrey H. Morley (**GHM**, England)

Jasper D. Skinner, II (**JDS**, United States)

168

35√2

70

70√2

105√2

28√2

56

32√2

32

48

98√2

98

28

16√2

16

8√2

42

42√2