

















2. Graphs and currents.

2.1. Discription of graphs correspond ing toﬁtriangulated
parallellograms.

Brooks, Smith, Stone and Tutte [43 proposed to associate a
graph with a squared rectangle.

Brooks c.s. [ 2] made a proposal to associate a directed graph,
or digraph for short, with a triangulated parallellogram. He
showed how this could be done. See figure 1.
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figure 1., A triangulated parallellogram P and its corresponding
graph G.

—Each vertex in the graph G corresponds to a max imal horizontal
segment in the parallellogram P.

—Each dart (or directed edge) in G corresponds to a triangle in
P. (We use the word dart instead of directed edge in order to
conform ourselves to Tutte).

-A triangle with its base incident with a horizontal segment
corresponds to an outgoing dart.

-A triangle with its apex incident with a horizontal segment
corresponds to an incoming dart.

The thus obtained digraph will be "balanced",which means that
at each vertex the number of incoming darts is equal to the
number of outgoing darts.

The degree of each vertex (the total number of incoming and
outgoing darts incident with that vertex) will therefore be
even.

1t can easily be shown that the graph will be planar and that
it can be drawn in the plane in such a way that the ordering of
the darts around each vertex will be the same as the ordering
of the corresponding triangles around a horizontal segment.

The incoming and outgoing darts around each vertex will then
alternate. The drawing of such a planar graph in the plane is
called an "alternating map".
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2.2. Qg_:eleQEE;cal_godel“ to calculate the sizes of the
triangles.

procks c.s. [4] also showed how a graph , corresponding to a
squared rectangle, could ba associated with an electrical
network. This network can be used to calculate the elements of
the rectangle.

brooks c.s. [2] proposed an nelectrical model" to calculate the
sizes of the triangles in a triangulated parallellogram.This
model , however, is somewhat ex traordinary because it has no re-
lationship to any physical electrical model. put it proved to
be very useful in calculating the sizes of the constituent tri—
angles.

Tutte's "electrical model"™ contains two laws , one »current law"
and one "potential law" .

First he associates with every vertex a “potential" and with
every dart a wcurrent". The direction of this current has
nothing to do with the direction of the dart.

with a dart, a nyol tage drop" can be associated, heing the dif-
ference of the "potentials“ of the two incident vertices.

The "resistance" of =a dart lsithe guotient of the "voltage
drop" and the "current".

The "current law" will then be:

The total sum of the wocurrents" in all outgoing darts incident
with a vertex will be Zzero. This applies to every vertex of the
graph.

The "potential law" will be:
the total "voltage drop" around any circuit in the graph is
zero (without regard to the directions of the darts).

when we translate these two laws to the geometric aspect of the
problem of triangulated parallellograms, we can say that:

-the "current" 1in a dart equals the size of the corresponding
triangle.
-the "wvoltage drop" between two vertices 1is equal to the

distance (along a slanting side) between the correspond ing
segments.

We can describe the current law in another way: the sum of the
sizes of the triangles with their base incident with a certaln
horizontal segment is zero.

This means that the sum of the sizes of the triangles base-
incident with and laying above a segment is minus the sum of
the sizes of the triangles base-incident with and laying below
that segment.

wWwe can notice that the "resistance" of a dart is equal to the
guotient of the lengths of the slanting side and the base of
the corresponding triangle. In the case of equilateral
triangles, it will be unity.
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We can transform this parallellogram into a triangle by adding
two triangles (figure 2b. ). The modification in the graph 1is
obvious. We should add a dart from the old negative pole Y to
the old postive pole ¥ and one from X to a new vertex Z.

It is in some ways convenient to make 2 coincide with Y in the
graph, to obtain a new balanced digraph. The dart between X and
72 is then called the "polar dart", and is distinguished by a
cross—bar. See figure 2C.

We observe that we can rotate the triangulated triangle through
120 degrees, to obtain the same triangle, but in another posi-
tion. The correspond ing balanced digraph will not necessarily 1
be the same. Y
'he triangle can be rotated once more, resulting in a third
graph. These three graphs are called "trials".

The question arises how these trials are related to each other.

Wwhen we rotate a triangulated triangle trough 120 degrees
clockwise, 4 horizontal segment in the triangulation (a vertex
in the graph) will be transformed into a segment which makes an

angle of 60 degrees with the horizontal axis. See figure 3.
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| figure 3. Trials and their corresponding graphs.

This segment 1is bounded by a set of triangles which surround
| it, pointing upwards (on the righthand side) and downwards (on
| the lefthand side).
| pach of these triangles corresponds to a dart in the map and
| drawing these darts wil result in a face. This face is directed

counterclockwise and will be called a left directed face.

A segment making an angle of 120 degrees with the horizontal

axis corresponds to a clockwise, or right directed face in the

map.
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4. Production QEJEEQ_balancgq_gigragggl

4.1. Relationship to c—nets.
Because the c¢—-nets (3-connected planar graphs) up to and in-
cluding order 22 were available on magnetic tape we thought it
would be a very efficient way te produce the balanced digraphs

using the c-nets as base nets.

4.2, “haracteristics of the balanced digraphs.
Charzas:mzristic 1.
In c¢aapter 2 it was shown that the degree of each vertex in a

balanced digraph is even.

Defirition.

A 3-connected digraph is a digraph such that deletion of any
two vertices results in a connected graph.

Observe that this is a natural extension of 3-connectedness for

undirected graphs.

Theorem 4.1.

I B ] triangulation is compound, than the associated digraph 1is
not 3-connected.

Proof.

If the triangulation is compound, it contains a sub-triangu-
lated triangle, trapezium or parallellogram.

This sub-figure consists of two horizontal segments, sonnected
by twc slanting sides. Hence its equivalent in the d:orvaph is a
sub-dicraph, separated from the remainder of the digrzph by two
faces fl1 and f£2 (corresponding to the slanting sides) and con-
nected to it by two vertices nl and n2 (corresponcing to the
horizontal segments). fl and f£2 will both be incident with nl
and n2. The sub—net is therefore only connected by nl and n2 to
the remeinder of the net and hence the digraph is not 3-connec-=
ted. See figure 5.
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Figure 5. Compound triangula:a¢ parallellogram and its corres-—
ponding digraph.
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Flimination of p6 results in:

2 ipaah Aeplowee t=r2B = 6K & 0 (3)
B

Kt i (4)

Trialising results in:

kY s o= (5)
3
&)

Kltg s (6)
3

Since K' = Mr and K''= M1, we can write:

K + K' + K'"= K+ Mc +ML=K+M 5. B (7)

This is in contradiction with Eulers Polyhedran Theorem:
K +M=B + 2

Hence, at least one of the three trials should contain a vertex
of degree 4.

Theorem 4.4.
A triangulation can never contain triangles which have all
different lenghts of their sides.

Proofk.

Using theorem 4.3 we can say that one of the trials will con-
tain a vertex nl of degree 4. This vertex is incident with two
left directed faces f1l1 and f12 and with two right directed
faces frl and fr2.

Trialising will transform nl into a left directed face, inci-
dent with the vertices obtained from frl and fr2. This face
consists of two antiparallel darts, since frl and fr2 are the
only two right directed faces incident with nl.

It can easily be shown from the "electrical model" the
"currents" through these two darts will be each others oppo-
sites. Hence, the lengths of the sides of the corresponding
triangles are equal.

4.3. How the balanced digraphs are obtained from the c-nets.

When we omit from a balanced digraph the directions from the
darts and undouble all branches, we will obtain an undirected
graph in which two vertices are connected by at most one
branch.
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gince the digraph should be 3-connected when we want to obtain
simple triangulations, the corresponding undirected graph will
be 3-connected too. L

A balanced digraph is planar, therefore the undirected graph
will be planar.

Hence, the undirected graph will be a c-net.

It is our purpose to obtain from a c—-net a balanced digraph.
Therefore we should redouble branches in a systematical way
until we reach a graph in which the degrees of all vertices are
even. In directing the edges we obtain a balanced digraph.

In order to generate all balanced digraphs, the followingd
procedure 1S used (in pseudo PASCAL):

procedure DOUBLE(i:integer);
comment: i is a branch of a c-net which is used as input data.
The branches are arbitrary numbered from 1 to B;
var J:lnteger;
begin if there is no parallel branch to branch i
then
begin add one branch parallel to 1;
if the degrees of all vertices are even
then output(graph)
end;
for j:=i+l to B do DOUBLE(])
end;

This procedure is called in the statement:
for n:=1 to B do DOUBLE(1);

The thus obtained graphs are directed to get the balanced
digraphs.
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6.The various figures that could be triangulated.

Having created a set of graphs, W& should choose in a certain
graph a set of vertices as a source (so) and a sink (si) for
the currentcalculation in that graph. The relationship between
so and si determines the kind of figure we calculate.

2 LESe and si are incidental, there will be a triangle be-
tween the upper and lower side of the triangulated

parallellogram. see figure 8a.

figure B8a and 8b. Transforming a compound parallellogram
into a triangle.

This parallellogram, however, wWill be compound ,since it
contains a triangulated trapezium. But by deleting the
triangle between the upper and lower side, and adding one to
the small horizontal side off the trapezium we obtain a
triangulated triangle (figure 8b) .

Because every triangulated triangle can be transformed into
a triangulated parallellogram, using this method the other

way around, we can make all triangulated triangles.

b) 1f so and si are not incidental, we will not get necessarily

a triangulated parallellogram. This will only be the case if
so and si are incident with a common face, corresponding to
a slanting side of the parallellogram.

o i i so and si are not incident with a common face, we will
obtain a triangulated cilinder.

d) If all sides of a parallellogram are equal, we found a i =
angulated rhombus.
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7. The programs.

This program is mainly used to change the representation of the
c-nets. The se were represented by a code proposed by
puijvestijn [3]. See figure 9.

figure 9. c-net of order 8.

Face I could be represented by the code 1451. The first vertex
is repeated for practical reasons. other posible codes are 4514
or 5145 (using the left orientation).

A code of the c-net is the sequence of codes of its faces,
separated by zeros and completed by two zeros.

A possible code for the net of figure 8 is:
145101521025320435401234100

The outputcode for the c-nets, produced by CNET is just a
table of the branches. They are represented by their from-
vertex, their to-vertex, their left face and their right face.
A 'd' is added if the branch is doubled. This, of course will
never be the case with c-nets, but it will occur if branches
are doubled.

This code is completed by an integer, indicating the number of
the last doubled branch + 1. (This is also done for practical
reasons) .

See figure 10.
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figure 10.
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